safe_numerics/doc/boostbook/promotion_policy_concept.xml
2019-05-10 04:31:00 -07:00

263 lines
8.5 KiB
XML

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE section PUBLIC "-//Boost//DTD BoostBook XML V1.1//EN"
"http://www.boost.org/tools/boostbook/dtd/boostbook.dtd">
<section id="safe_numerics.promotion_policy">
<title>PromotionPolicy&lt;PP&gt;</title>
<?dbhtml stop-chunking?>
<section>
<title>Description</title>
<para>In C++, arithmetic operations result in types which may or may not
be the same as the constituent types. A promotion policy determines the
type of the result of an arithmetic operation. For example, in the
following code<programlisting>int x;
char y;
auto z = x + y</programlisting>the type of <code>z</code> will be an
<code>int</code>. This is a consequence for the standard rules for type
promotion for C/C++ arithmetic. A key feature of library permits one to
specify his own type promotion rules via a PromotionPolicy class.</para>
</section>
<section>
<title>Notation</title>
<informaltable>
<tgroup cols="2" colsep="1" rowsep="1">
<colspec align="left" colwidth="1*"/>
<colspec align="left" colwidth="4*"/>
<tbody>
<row>
<entry><code>PP</code></entry>
<entry>A type that full fills the requirements of a
PromotionPollicy</entry>
</row>
<row>
<entry><code>T, U</code></entry>
<entry>A type that is a model of the Numeric concept</entry>
</row>
<row>
<entry><code>R</code></entry>
<entry>An object of type modeling Numeric which can be used to
construct a SafeNumeric type.</entry>
</row>
</tbody>
</tgroup>
</informaltable>
</section>
<section>
<title>Valid Expressions</title>
<para>Any operations which result in integers which cannot be represented
as some Numeric type will throw an exception.These expressions return a
type which can be used as the basis create a SafeNumeric type.</para>
<para><informaltable>
<tgroup cols="2">
<colspec align="left"/>
<colspec align="left"/>
<thead>
<row>
<entry align="left">Expression</entry>
<entry>Return Value</entry>
</row>
</thead>
<tbody>
<row>
<entry><code>PP::addition_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::subtraction_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::multiplication_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::division_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::modulus_result&lt;T, U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::comparison_result&lt;T,
U&gt;::type</code></entry>
<entry>bool</entry>
</row>
<row>
<entry><code>PP::left_shift_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::right_shift_result&lt;T,
u&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::bitwise_or_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::bitwise_and_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
<row>
<entry><code>PP::bitwise_xor_result&lt;T,
U&gt;::type</code></entry>
<entry>unspecified Numeric type</entry>
</row>
</tbody>
</tgroup>
</informaltable></para>
</section>
<section>
<title>Models</title>
<para>The library contains a number of pre-made promotion policies:</para>
<itemizedlist>
<listitem id="safe_numerics.promotion_policy.models.native">
<para><code>boost::numeric::native</code></para>
<para>Use the normal C/C++ expression type promotion rules.
<programlisting name="cpp">int x;
char y;
auto z = x + y; // could result in overflow
safe&lt;int, native&gt; sx;
auto sz = sx + y; // standard C++ code which detects errors</programlisting></para>
<para>Type sz will be a <link
linkend="safe_numerics.safe_numeric_concept">SafeNumeric</link> type
based on <code>int</code>. If the result exceeds the maximum value
that can be stored in an <code>int</code>, an error is
detected.</para>
<para>The <code>native</code> policy is documented in <link
linkend="safe_numerics.promotion_policies.native">Promotion Policies -
native</link>.</para>
</listitem>
<listitem id="safe_numerics.promotion_policy.models.automatic">
<para><code>boost::numeric::automatic</code></para>
<para>Use optimizing expression type promotion rules. These rules
replace the normal C/C++ type promotion rules with other rules which
are designed to result in more efficient computations. Expression
types are promoted to the smallest type which can be guaranteed to
hold the result without overflow. If there is no such type, the result
will be checked for overflow. Consider the following
example:<programlisting>int x;
char y;
auto z = x + y; // could result in overflow
safe&lt;int, automatic&gt; sx;
auto sz = sx + y;
// sz is a safe type based on long
// hence sz is guaranteed not to overflow.
safe_unsigned_range&lt;1, 4&gt; a;
safe_unsigned_range&lt;2, 4&gt; b;
auto c = a + b; // c will be a safe type with a range [3,8] and cannot overflow
</programlisting></para>
<para>Type sz will be a <link
linkend="safe_numerics.safe_numeric_concept">SafeNumeric</link> type
which is guaranteed to hold he result of x + y. In this case that will
be a long int (or perhaps a long long) depending upon the compiler and
machine architecture. In this case, there will be no need for any
special checking on the result and there can be no overflow.</para>
<para>Type of c will be a signed character as that type can be
guaranteed to hold the sum so no overflow checking is done.</para>
<para>This policy is documented in <link
linkend="safe_numerics.promotion_policies.automatic">Promotion
Policies - automatic</link></para>
</listitem>
<listitem>
<para>boost::numeric::cpp</para>
<para>Use expression type promotion rules to emulate another
processor. When this policy is used, C++ type for safe integers
follows the rules that a compiler on the target processor would use.
This permits one to test code destined for a one processor on the
another one. One situation there this can be very, very useful is when
testing code destined for a micro controller which doesn't have the
logging, debugging, input/output facilities of a
desktop.<programlisting>// specify a promotion policy to support proper emulation of
// PIC 18f2520 types on the desktop
using pic16_promotion = boost::numeric::cpp&lt;
8, // char 8 bits
16, // short 16 bits
16, // int 16 bits
16, // long 16 bits
32 // long long 32 bits
&gt;;
...
safe&lt;std::uint16_t, pic16_promotion&gt; x, y;
...
x + y; // detect possible overflow on the pic.</programlisting></para>
<para>For a complete example see <link
linkend="safe_numerics.safety_critical_embedded_controller">Safety
Critical Embedded Controller</link>.</para>
</listitem>
</itemizedlist>
</section>
<section>
<title>Header</title>
<para><ulink
url="../../include/boost/safe_numerics/concept/promotion_policy.hpp"><code>#include
&lt;boost/numeric/safe_numerics/concepts/promotion_policy.hpp&gt;
</code></ulink></para>
</section>
</section>