smart_ptr/extras/test/sp_atomic_mt2_test.cpp

248 lines
5.0 KiB
C++

// Copyright (c) 2008 Peter Dimov
//
// Distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
#include <boost/config.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <boost/thread/shared_mutex.hpp>
#include <boost/thread/locks.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <boost/detail/lightweight_thread.hpp>
#include <vector>
#include <numeric>
#include <cstdio>
#include <cstdlib>
#include <cstddef>
#include <ctime>
//
static void next_value( unsigned & v )
{
v = v % 2? 3 * v + 1: v / 2;
}
struct X
{
std::vector<unsigned> v_;
explicit X( std::size_t n ): v_( n )
{
for( std::size_t i = 0; i < n; ++i )
{
v_[ i ] = i;
}
}
unsigned get() const
{
return std::accumulate( v_.begin(), v_.end(), 0 );
}
void set()
{
std::for_each( v_.begin(), v_.end(), next_value );
}
};
static boost::shared_ptr<X> ps;
static boost::detail::lightweight_mutex lm;
static boost::shared_mutex rw;
enum prim_type
{
pt_mutex,
pt_rwlock,
pt_atomics
};
int read_access( prim_type pt )
{
switch( pt )
{
case pt_mutex:
{
boost::detail::lightweight_mutex::scoped_lock lock( lm );
return ps->get();
}
case pt_rwlock:
{
boost::shared_lock<boost::shared_mutex> lock( rw );
return ps->get();
}
case pt_atomics:
{
boost::shared_ptr<X> p2 = boost::atomic_load( &ps );
return p2->get();
}
}
}
void write_access( prim_type pt )
{
switch( pt )
{
case pt_mutex:
{
boost::detail::lightweight_mutex::scoped_lock lock( lm );
ps->set();
}
break;
case pt_rwlock:
{
boost::unique_lock<boost::shared_mutex> lock( rw );
ps->set();
}
break;
case pt_atomics:
{
boost::shared_ptr<X> p1 = boost::atomic_load( &ps );
for( ;; )
{
boost::shared_ptr<X> p2( new X( *p1 ) );
p2->set();
if( boost::atomic_compare_exchange( &ps, &p1, p2 ) ) break;
}
}
break;
}
}
void worker( int k, prim_type pt, int n, int r )
{
++r;
unsigned s = 0, nr = 0, nw = 0;
for( int i = 0; i < n; ++i )
{
if( i % r )
{
s += read_access( pt );
++nr;
}
else
{
write_access( pt );
++s;
++nw;
}
}
printf( "Worker %2d: %u:%u, %10u\n", k, nr, nw, s );
}
#if defined( BOOST_HAS_PTHREADS )
char const * thmodel = "POSIX";
#else
char const * thmodel = "Windows";
#endif
char const * pt_to_string( prim_type pt )
{
switch( pt )
{
case pt_mutex:
return "mutex";
case pt_rwlock:
return "rwlock";
case pt_atomics:
return "atomics";
}
}
static void handle_pt_option( std::string const & opt, prim_type & pt, prim_type pt2 )
{
if( opt == pt_to_string( pt2 ) )
{
pt = pt2;
}
}
static void handle_int_option( std::string const & opt, std::string const & prefix, int & k, int kmin, int kmax )
{
if( opt.substr( 0, prefix.size() ) == prefix )
{
int v = atoi( opt.substr( prefix.size() ).c_str() );
if( v >= kmin && v <= kmax )
{
k = v;
}
}
}
int main( int ac, char const * av[] )
{
using namespace std; // printf, clock_t, clock
int m = 4; // threads
int n = 10000; // vector size
int k = 1000000; // iterations
int r = 100; // read/write ratio, r:1
prim_type pt = pt_atomics;
for( int i = 1; i < ac; ++i )
{
handle_pt_option( av[i], pt, pt_mutex );
handle_pt_option( av[i], pt, pt_rwlock );
handle_pt_option( av[i], pt, pt_atomics );
handle_int_option( av[i], "n=", n, 1, INT_MAX );
handle_int_option( av[i], "size=", n, 1, INT_MAX );
handle_int_option( av[i], "k=", k, 1, INT_MAX );
handle_int_option( av[i], "iterations=", k, 1, INT_MAX );
handle_int_option( av[i], "m=", m, 1, INT_MAX );
handle_int_option( av[i], "threads=", m, 1, INT_MAX );
handle_int_option( av[i], "r=", r, 1, INT_MAX );
handle_int_option( av[i], "ratio=", r, 1, INT_MAX );
}
printf( "%s: threads=%d size=%d iterations=%d ratio=%d %s\n\n", thmodel, m, n, k, r, pt_to_string( pt ) );
ps.reset( new X( n ) );
clock_t t = clock();
std::vector<boost::detail::lw_thread_t> a( m );
for( int i = 0; i < m; ++i )
{
boost::detail::lw_thread_create( a[ i ], boost::bind( worker, i, pt, k, r ) );
}
for( int j = 0; j < m; ++j )
{
boost::detail::lw_thread_join( a[ j ] );
}
t = clock() - t;
double ts = static_cast<double>( t ) / CLOCKS_PER_SEC;
printf( "%.3f seconds, %.3f accesses per microsecond.\n", ts, m * k / ts / 1e+6 );
}