spirit/classic/example/fundamental/refactoring.cpp
2008-04-13 16:28:27 +00:00

215 lines
6.1 KiB
C++

/*=============================================================================
Copyright (c) 2002-2003 Hartmut Kaiser
http://spirit.sourceforge.net/
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
///////////////////////////////////////////////////////////////////////////////
// This example shows the usage of the refactoring parser family parsers
// See the "Refactoring Parsers" chapter in the User's Guide.
#include <iostream>
#include <string>
#include <boost/spirit/include/classic_core.hpp>
#include <boost/spirit/include/classic_refactoring.hpp>
///////////////////////////////////////////////////////////////////////////////
// used namespaces
using namespace std;
using namespace BOOST_SPIRIT_CLASSIC_NS;
///////////////////////////////////////////////////////////////////////////////
// actor, used by the refactor_action_p test
struct refactor_action_actor
{
refactor_action_actor (std::string &str_) : str(str_) {}
template <typename IteratorT>
void operator() (IteratorT const &first, IteratorT const &last) const
{
str = std::string(first, last-first);
}
std::string &str;
};
///////////////////////////////////////////////////////////////////////////////
// main entry point
int main()
{
parse_info<> result;
char const *test_string = "Some string followed by a newline\n";
///////////////////////////////////////////////////////////////////////////////
//
// 1. Testing the refactor_unary_d parser
//
// The following test should successfully parse the test string, because the
//
// refactor_unary_d[
// *anychar_p - '\n'
// ]
//
// is refactored into
//
// *(anychar_p - '\n').
//
///////////////////////////////////////////////////////////////////////////////
result = parse(test_string, refactor_unary_d[*anychar_p - '\n'] >> '\n');
if (result.full)
{
cout << "Successfully refactored an unary!" << endl;
}
else
{
cout << "Failed to refactor an unary!" << endl;
}
// Parsing the same test string without refactoring fails, because the
// *anychar_p eats up all the input up to the end of the input string.
result = parse(test_string, (*anychar_p - '\n') >> '\n');
if (result.full)
{
cout
<< "Successfully parsed test string (should not happen)!"
<< endl;
}
else
{
cout
<< "Correctly failed parsing the test string (without refactoring)!"
<< endl;
}
cout << endl;
///////////////////////////////////////////////////////////////////////////////
//
// 2. Testing the refactor_action_d parser
//
// The following test should successfully parse the test string, because the
//
// refactor_action_d[
// (*(anychar_p - '$'))[refactor_action_actor(str)] >> '$'
// ]
//
// is refactored into
//
// (*(anychar_p - '$') >> '$')[refactor_action_actor(str)].
//
///////////////////////////////////////////////////////////////////////////////
std::string str;
char const *test_string2 = "Some test string ending with a $";
result =
parse(test_string2,
refactor_action_d[
(*(anychar_p - '$'))[refactor_action_actor(str)] >> '$'
]
);
if (result.full && str == std::string(test_string2))
{
cout << "Successfully refactored an action!" << endl;
cout << "Parsed: \"" << str << "\"" << endl;
}
else
{
cout << "Failed to refactor an action!" << endl;
}
// Parsing the same test string without refactoring fails, because the
// the attached actor gets called only for the first part of the string
// (without the '$')
result =
parse(test_string2,
(*(anychar_p - '$'))[refactor_action_actor(str)] >> '$'
);
if (result.full && str == std::string(test_string2))
{
cout << "Successfully parsed test string!" << endl;
cout << "Parsed: \"" << str << "\"" << endl;
}
else
{
cout
<< "Correctly failed parsing the test string (without refactoring)!"
<< endl;
cout << "Parsed instead: \"" << str << "\"" << endl;
}
cout << endl;
///////////////////////////////////////////////////////////////////////////////
//
// 3. Testing the refactor_action_d parser with an embedded (nested)
// refactor_unary_p parser
//
// The following test should successfully parse the test string, because the
//
// refactor_action_unary_d[
// ((*anychar_p)[refactor_action_actor(str)] - '$')
// ] >> '$'
//
// is refactored into
//
// (*(anychar_p - '$'))[refactor_action_actor(str)] >> '$'.
//
///////////////////////////////////////////////////////////////////////////////
const refactor_action_gen<refactor_unary_gen<> > refactor_action_unary_d =
refactor_action_gen<refactor_unary_gen<> >(refactor_unary_d);
result =
parse(test_string2,
refactor_action_unary_d[
((*anychar_p)[refactor_action_actor(str)] - '$')
] >> '$'
);
if (result.full)
{
cout
<< "Successfully refactored an action attached to an unary!"
<< endl;
cout << "Parsed: \"" << str << "\"" << endl;
}
else
{
cout << "Failed to refactor an action!" << endl;
}
// Parsing the same test string without refactoring fails, because the
// anychar_p eats up all the input up to the end of the string
result =
parse(test_string2,
((*anychar_p)[refactor_action_actor(str)] - '$') >> '$'
);
if (result.full)
{
cout << "Successfully parsed test string!" << endl;
cout << "Parsed: \"" << str << "\"" << endl;
}
else
{
cout
<< "Correctly failed parsing the test string (without refactoring)!"
<< endl;
cout << "Parsed instead: \"" << str << "\"" << endl;
}
cout << endl;
return 0;
}