spirit/example/qi/compiler_tutorial/conjure1/compiler.cpp
2018-12-27 20:54:49 +03:00

629 lines
18 KiB
C++

/*=============================================================================
Copyright (c) 2001-2011 Joel de Guzman
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
=============================================================================*/
#include "compiler.hpp"
#include "vm.hpp"
#include <boost/foreach.hpp>
#include <boost/variant/apply_visitor.hpp>
#include <boost/assert.hpp>
#include <boost/lexical_cast.hpp>
#include <set>
namespace client { namespace code_gen
{
void function::op(int a)
{
code.push_back(a);
size_ += 1;
}
void function::op(int a, int b)
{
code.push_back(a);
code.push_back(b);
size_ += 2;
}
void function::op(int a, int b, int c)
{
code.push_back(a);
code.push_back(b);
code.push_back(c);
size_ += 3;
}
int const* function::find_var(std::string const& name) const
{
std::map<std::string, int>::const_iterator i = variables.find(name);
if (i == variables.end())
return 0;
return &i->second;
}
void function::add_var(std::string const& name)
{
std::size_t n = variables.size();
variables[name] = n;
}
void function::link_to(std::string const& name, std::size_t address)
{
function_calls[address] = name;
}
void function::print_assembler() const
{
std::vector<int>::const_iterator pc = code.begin() + address;
std::vector<std::string> locals(variables.size());
typedef std::pair<std::string, int> pair;
BOOST_FOREACH(pair const& p, variables)
{
locals[p.second] = p.first;
std::cout << " local "
<< p.first << ", @" << p.second << std::endl;
}
std::map<std::size_t, std::string> lines;
std::set<std::size_t> jumps;
while (pc != (code.begin() + address + size_))
{
std::string line;
std::size_t address = pc - code.begin();
switch (*pc++)
{
case op_neg:
line += " op_neg";
break;
case op_not:
line += " op_not";
break;
case op_add:
line += " op_add";
break;
case op_sub:
line += " op_sub";
break;
case op_mul:
line += " op_mul";
break;
case op_div:
line += " op_div";
break;
case op_eq:
line += " op_eq";
break;
case op_neq:
line += " op_neq";
break;
case op_lt:
line += " op_lt";
break;
case op_lte:
line += " op_lte";
break;
case op_gt:
line += " op_gt";
break;
case op_gte:
line += " op_gte";
break;
case op_and:
line += " op_and";
break;
case op_or:
line += " op_or";
break;
case op_load:
line += " op_load ";
line += locals[*pc++];
break;
case op_store:
line += " op_store ";
line += locals[*pc++];
break;
case op_int:
line += " op_int ";
line += boost::lexical_cast<std::string>(*pc++);
break;
case op_true:
line += " op_true";
break;
case op_false:
line += " op_false";
break;
case op_jump:
{
line += " op_jump ";
std::size_t pos = (pc - code.begin()) + *pc++;
if (pos == code.size())
line += "end";
else
line += boost::lexical_cast<std::string>(pos);
jumps.insert(pos);
}
break;
case op_jump_if:
{
line += " op_jump_if ";
std::size_t pos = (pc - code.begin()) + *pc++;
if (pos == code.size())
line += "end";
else
line += boost::lexical_cast<std::string>(pos);
jumps.insert(pos);
}
break;
case op_call:
{
line += " op_call ";
int nargs = *pc++;
std::size_t jump = *pc++;
line += boost::lexical_cast<std::string>(nargs) + ", ";
BOOST_ASSERT(function_calls.find(jump) != function_calls.end());
line += function_calls.find(jump)->second;
}
break;
case op_stk_adj:
line += " op_stk_adj ";
line += boost::lexical_cast<std::string>(*pc++);
break;
case op_return:
line += " op_return";
break;
}
lines[address] = line;
}
std::cout << "start:" << std::endl;
typedef std::pair<std::size_t, std::string> line_info;
BOOST_FOREACH(line_info const& l, lines)
{
std::size_t pos = l.first;
if (jumps.find(pos) != jumps.end())
std::cout << pos << ':' << std::endl;
std::cout << l.second << std::endl;
}
std::cout << "end:" << std::endl << std::endl;
}
bool compiler::operator()(unsigned int x)
{
BOOST_ASSERT(current != 0);
current->op(op_int, x);
return true;
}
bool compiler::operator()(bool x)
{
BOOST_ASSERT(current != 0);
current->op(x ? op_true : op_false);
return true;
}
bool compiler::operator()(ast::identifier const& x)
{
BOOST_ASSERT(current != 0);
int const* p = current->find_var(x.name);
if (p == 0)
{
error_handler(x.id, "Undeclared variable: " + x.name);
return false;
}
current->op(op_load, *p);
return true;
}
bool compiler::operator()(ast::optoken const& x)
{
BOOST_ASSERT(current != 0);
switch (x)
{
case ast::op_plus: current->op(op_add); break;
case ast::op_minus: current->op(op_sub); break;
case ast::op_times: current->op(op_mul); break;
case ast::op_divide: current->op(op_div); break;
case ast::op_equal: current->op(op_eq); break;
case ast::op_not_equal: current->op(op_neq); break;
case ast::op_less: current->op(op_lt); break;
case ast::op_less_equal: current->op(op_lte); break;
case ast::op_greater: current->op(op_gt); break;
case ast::op_greater_equal: current->op(op_gte); break;
case ast::op_logical_or: current->op(op_or); break;
case ast::op_logical_and: current->op(op_and); break;
default: BOOST_ASSERT(0); return false;
}
return true;
}
bool compiler::operator()(ast::unary const& x)
{
BOOST_ASSERT(current != 0);
if (!boost::apply_visitor(*this, x.operand_))
return false;
switch (x.operator_)
{
case ast::op_negative: current->op(op_neg); break;
case ast::op_not: current->op(op_not); break;
case ast::op_positive: break;
default: BOOST_ASSERT(0); return false;
}
return true;
}
bool compiler::operator()(ast::function_call const& x)
{
BOOST_ASSERT(current != 0);
if (functions.find(x.function_name.name) == functions.end())
{
error_handler(x.function_name.id, "Function not found: " + x.function_name.name);
return false;
}
boost::shared_ptr<code_gen::function> p = functions[x.function_name.name];
if (p->nargs() != x.args.size())
{
error_handler(x.function_name.id, "Wrong number of arguments: " + x.function_name.name);
return false;
}
BOOST_FOREACH(ast::expression const& expr, x.args)
{
if (!(*this)(expr))
return false;
}
current->op(
op_call,
p->nargs(),
p->get_address());
current->link_to(x.function_name.name, p->get_address());
return true;
}
namespace
{
int precedence[] = {
// precedence 1
1, // op_comma
// precedence 2
2, // op_assign
2, // op_plus_assign
2, // op_minus_assign
2, // op_times_assign
2, // op_divide_assign
2, // op_mod_assign
2, // op_bit_and_assign
2, // op_bit_xor_assign
2, // op_bitor_assign
2, // op_shift_left_assign
2, // op_shift_right_assign
// precedence 3
3, // op_logical_or
// precedence 4
4, // op_logical_and
// precedence 5
5, // op_bit_or
// precedence 6
6, // op_bit_xor
// precedence 7
7, // op_bit_and
// precedence 8
8, // op_equal
8, // op_not_equal
// precedence 9
9, // op_less
9, // op_less_equal
9, // op_greater
9, // op_greater_equal
// precedence 10
10, // op_shift_left
10, // op_shift_right
// precedence 11
11, // op_plus
11, // op_minus
// precedence 12
12, // op_times
12, // op_divide
12, // op_mod
// precedence 13
13, // op_positive
13, // op_negative
13, // op_pre_incr
13, // op_pre_decr
13, // op_compl
13, // op_not
// precedence 14
14, // op_post_incr
14 // op_post_decr
};
}
// The Shunting-yard algorithm
bool compiler::compile_expression(
int min_precedence,
std::list<ast::operation>::const_iterator& rbegin,
std::list<ast::operation>::const_iterator rend)
{
while ((rbegin != rend) && (precedence[rbegin->operator_] >= min_precedence))
{
ast::optoken op = rbegin->operator_;
if (!boost::apply_visitor(*this, rbegin->operand_))
return false;
++rbegin;
while ((rbegin != rend) && (precedence[rbegin->operator_] > precedence[op]))
{
ast::optoken next_op = rbegin->operator_;
compile_expression(precedence[next_op], rbegin, rend);
}
(*this)(op);
}
return true;
}
bool compiler::operator()(ast::expression const& x)
{
BOOST_ASSERT(current != 0);
if (!boost::apply_visitor(*this, x.first))
return false;
std::list<ast::operation>::const_iterator rbegin = x.rest.begin();
if (!compile_expression(0, rbegin, x.rest.end()))
return false;
return true;
}
bool compiler::operator()(ast::assignment const& x)
{
BOOST_ASSERT(current != 0);
if (!(*this)(x.rhs))
return false;
int const* p = current->find_var(x.lhs.name);
if (p == 0)
{
error_handler(x.lhs.id, "Undeclared variable: " + x.lhs.name);
return false;
}
current->op(op_store, *p);
return true;
}
bool compiler::operator()(ast::variable_declaration const& x)
{
BOOST_ASSERT(current != 0);
int const* p = current->find_var(x.lhs.name);
if (p != 0)
{
error_handler(x.lhs.id, "Duplicate variable: " + x.lhs.name);
return false;
}
if (x.rhs) // if there's an RHS initializer
{
bool r = (*this)(*x.rhs);
if (r) // don't add the variable if the RHS fails
{
current->add_var(x.lhs.name);
current->op(op_store, *current->find_var(x.lhs.name));
}
return r;
}
else
{
current->add_var(x.lhs.name);
}
return true;
}
bool compiler::operator()(ast::statement const& x)
{
BOOST_ASSERT(current != 0);
return boost::apply_visitor(*this, x);
}
bool compiler::operator()(ast::statement_list const& x)
{
BOOST_ASSERT(current != 0);
BOOST_FOREACH(ast::statement const& s, x)
{
if (!(*this)(s))
return false;
}
return true;
}
bool compiler::operator()(ast::if_statement const& x)
{
BOOST_ASSERT(current != 0);
if (!(*this)(x.condition))
return false;
current->op(op_jump_if, 0); // we shall fill this (0) in later
std::size_t skip = current->size()-1; // mark its position
if (!(*this)(x.then))
return false;
(*current)[skip] = current->size()-skip; // now we know where to jump to (after the if branch)
if (x.else_) // We got an alse
{
(*current)[skip] += 2; // adjust for the "else" jump
current->op(op_jump, 0); // we shall fill this (0) in later
std::size_t exit = current->size()-1; // mark its position
if (!(*this)(*x.else_))
return false;
(*current)[exit] = current->size()-exit;// now we know where to jump to (after the else branch)
}
return true;
}
bool compiler::operator()(ast::while_statement const& x)
{
BOOST_ASSERT(current != 0);
std::size_t loop = current->size(); // mark our position
if (!(*this)(x.condition))
return false;
current->op(op_jump_if, 0); // we shall fill this (0) in later
std::size_t exit = current->size()-1; // mark its position
if (!(*this)(x.body))
return false;
current->op(op_jump,
int(loop-1) - int(current->size())); // loop back
(*current)[exit] = current->size()-exit; // now we know where to jump to (to exit the loop)
return true;
}
bool compiler::operator()(ast::return_statement const& x)
{
if (void_return)
{
if (x.expr)
{
error_handler(x.id, "'void' function returning a value: ");
return false;
}
}
else
{
if (!x.expr)
{
error_handler(x.id, current_function_name + " function must return a value: ");
return false;
}
}
if (x.expr)
{
if (!(*this)(*x.expr))
return false;
}
current->op(op_return);
return true;
}
bool compiler::operator()(ast::function const& x)
{
void_return = x.return_type == "void";
if (functions.find(x.function_name.name) != functions.end())
{
error_handler(x.function_name.id, "Duplicate function: " + x.function_name.name);
return false;
}
boost::shared_ptr<code_gen::function>& p = functions[x.function_name.name];
p.reset(new code_gen::function(code, x.args.size()));
current = p.get();
current_function_name = x.function_name.name;
// op_stk_adj 0 for now. we'll know how many variables
// we'll have later and add them
current->op(op_stk_adj, 0);
BOOST_FOREACH(ast::identifier const& arg, x.args)
{
current->add_var(arg.name);
}
if (!(*this)(x.body))
return false;
(*current)[1] = current->nvars(); // now store the actual number of variables
// this includes the arguments
return true;
}
bool compiler::operator()(ast::function_list const& x)
{
// Jump to the main function
code.push_back(op_jump);
code.push_back(0); // we will fill this in later when we finish compiling
// and we know where the main function is
BOOST_FOREACH(ast::function const& f, x)
{
if (!(*this)(f))
{
code.clear();
return false;
}
}
// find the main function
boost::shared_ptr<code_gen::function> p =
find_function("main");
if (!p) // main function not found
{
std::cerr << "Error: main function not defined" << std::endl;
return false;
}
code[1] = p->get_address()-1; // jump to this (main function) address
return true;
}
void compiler::print_assembler() const
{
typedef std::pair<std::string, boost::shared_ptr<code_gen::function> > pair;
BOOST_FOREACH(pair const& p, functions)
{
std::cout << ";;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;" << std::endl;
std::cout << p.second->get_address() << ": function " << p.first << std::endl;
p.second->print_assembler();
}
}
boost::shared_ptr<code_gen::function>
compiler::find_function(std::string const& name) const
{
function_table::const_iterator i = functions.find(name);
if (i == functions.end())
return boost::shared_ptr<code_gen::function>();
else
return i->second;
}
}}