bf2c4d2586
* Revert most of the changes to examples, because ugly macros don't belong in examples. Just use constexpr as appropriate. * Revert Lambda changes as they're wrong and Boost.Lambda doesn't support constexpr. * Remove include of broken math_fwd.hpp.
96 lines
2.8 KiB
C++
96 lines
2.8 KiB
C++
// Boost.Units - A C++ library for zero-overhead dimensional analysis and
|
|
// unit/quantity manipulation and conversion
|
|
//
|
|
// Copyright (C) 2003-2008 Matthias Christian Schabel
|
|
// Copyright (C) 2008 Steven Watanabe
|
|
//
|
|
// Distributed under the Boost Software License, Version 1.0. (See
|
|
// accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
/**
|
|
\file tutorial.cpp
|
|
|
|
\brief Basic tutorial using SI units.
|
|
|
|
\details
|
|
Tutorial
|
|
Defines a function that computes the work, in joules,
|
|
done by exerting a force in newtons over a specified distance
|
|
in meters and outputs the result to std::cout.
|
|
|
|
Also code for computing the complex impedance
|
|
using std::complex<double> as the value type.
|
|
|
|
Output:
|
|
@verbatim
|
|
//[tutorial_output
|
|
F = 2 N
|
|
dx = 2 m
|
|
E = 4 J
|
|
|
|
V = (12.5,0) V
|
|
I = (3,4) A
|
|
Z = (1.5,-2) Ohm
|
|
I*Z = (12.5,0) V
|
|
I*Z == V? true
|
|
//]
|
|
@endverbatim
|
|
*/
|
|
|
|
//[tutorial_code
|
|
#include <complex>
|
|
#include <iostream>
|
|
|
|
#include <boost/typeof/std/complex.hpp>
|
|
|
|
#include <boost/units/systems/si/energy.hpp>
|
|
#include <boost/units/systems/si/force.hpp>
|
|
#include <boost/units/systems/si/length.hpp>
|
|
#include <boost/units/systems/si/electric_potential.hpp>
|
|
#include <boost/units/systems/si/current.hpp>
|
|
#include <boost/units/systems/si/resistance.hpp>
|
|
#include <boost/units/systems/si/io.hpp>
|
|
|
|
using namespace boost::units;
|
|
using namespace boost::units::si;
|
|
|
|
constexpr
|
|
quantity<energy>
|
|
work(const quantity<force>& F, const quantity<length>& dx)
|
|
{
|
|
return F * dx; // Defines the relation: work = force * distance.
|
|
}
|
|
|
|
int main()
|
|
{
|
|
/// Test calculation of work.
|
|
quantity<force> F(2.0 * newton); // Define a quantity of force.
|
|
quantity<length> dx(2.0 * meter); // and a distance,
|
|
quantity<energy> E(work(F,dx)); // and calculate the work done.
|
|
|
|
std::cout << "F = " << F << std::endl
|
|
<< "dx = " << dx << std::endl
|
|
<< "E = " << E << std::endl
|
|
<< std::endl;
|
|
|
|
/// Test and check complex quantities.
|
|
typedef std::complex<double> complex_type; // double real and imaginary parts.
|
|
|
|
// Define some complex electrical quantities.
|
|
quantity<electric_potential, complex_type> v = complex_type(12.5, 0.0) * volts;
|
|
quantity<current, complex_type> i = complex_type(3.0, 4.0) * amperes;
|
|
quantity<resistance, complex_type> z = complex_type(1.5, -2.0) * ohms;
|
|
|
|
std::cout << "V = " << v << std::endl
|
|
<< "I = " << i << std::endl
|
|
<< "Z = " << z << std::endl
|
|
// Calculate from Ohm's law voltage = current * resistance.
|
|
<< "I * Z = " << i * z << std::endl
|
|
// Check defined V is equal to calculated.
|
|
<< "I * Z == V? " << std::boolalpha << (i * z == v) << std::endl
|
|
<< std::endl;
|
|
return 0;
|
|
}
|
|
//]
|