units/test/test_quantity.cpp
Giel van Schijndel 595390497c Add constexpr support
Ensuring that:
 * it still works as before on C++98 and C++03
 * C++11 "strict" constexpr is used where possible
  - requires replacing { R x; return f(x); } with { return f(R()); }
 * C++14 "relaxed" constexpr is used only where otherwise impossible
  - assignment operators
  - functions who's implementations require more than a single return
    statement
2016-08-15 00:14:14 +02:00

204 lines
6.0 KiB
C++

// Boost.Units - A C++ library for zero-overhead dimensional analysis and
// unit/quantity manipulation and conversion
//
// Copyright (C) 2003-2008 Matthias Christian Schabel
// Copyright (C) 2008 Steven Watanabe
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/**
\file
\brief test_units_1.cpp
\details
Test unit class.
Output:
@verbatim
@endverbatim
**/
#include "test_header.hpp"
#include <boost/units/pow.hpp>
namespace bu = boost::units;
BOOST_STATIC_CONSTEXPR double E_ = 2.718281828459045235360287471352662497757;
int test_main(int,char *[])
{
// default constructor
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy> E1;
BOOST_CHECK(E1.value() == double());
// value_type constructor
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy> E2(E_*bu::joules);
BOOST_CHECK(E2.value() == E_);
// copy constructor
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy> E3(E2);
BOOST_CHECK(E3.value() == E_);
// operator=
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy> E4 = E2;
BOOST_CHECK(E4.value() == E_);
// implicit copy constructor value_type conversion
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy,float> E5(E2);
BOOST_UNITS_CHECK_CLOSE(E5.value(),float(E_));
// implicit operator= value_type conversion
//BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy,float> E7 = E2;
//BOOST_UNITS_CHECK_CLOSE(E7.value(),float(E_));
//BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy,long> E8 = E2;
//BOOST_CHECK(E8.value() == long(E_));
// const construction
bu::quantity<bu::energy> E9(E2);
BOOST_CHECK(E9.value() == E_);
// value assignment
bu::quantity_cast<double&>(E9) = 1.5;
BOOST_CHECK(E9.value() == 1.5);
// value assignment with implicit value_type conversion
bu::quantity_cast<double&>(E9) = 2;
BOOST_CHECK(E9.value() == double(2));
// operator+=(this_type)
E9 = 2.0*bu::joules;
E9 += E9;
BOOST_CHECK(E9.value() == 4.0);
// operator-=(this_type)
E9 = 2.0*bu::joules;
E9 -= E9;
BOOST_CHECK(E9.value() == 0.0);
// operator*=(value_type)
E9 = 2.0*bu::joules;
E9 *= 2.0;
BOOST_CHECK(E9.value() == 4.0);
// operator/=(value_type)
E9 = 2.0*bu::joules;
E9 /= 2.0;
BOOST_CHECK(E9.value() == 1.0);
// static construct quantity from value_type
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::energy> E(bu::quantity<bu::energy>::from_value(2.5));
BOOST_CHECK(E.value() == 2.5);
// quantity_cast
// unit * scalar
BOOST_CHECK(bu::joules*2.0 == bu::quantity<bu::energy>::from_value(2.0));
// unit / scalar
BOOST_CHECK(bu::joules/2.0 == bu::quantity<bu::energy>::from_value(0.5));
// scalar * unit
BOOST_CHECK(2.0*bu::joules == bu::quantity<bu::energy>::from_value(2.0));
// scalar / unit
BOOST_CHECK(2.0/bu::joules == bu::quantity<bu::inverse_energy>::from_value(2.0));
// quantity * scalar
BOOST_CHECK(E*2.0 == bu::quantity<bu::energy>::from_value(5.0));
// quantity / scalar
BOOST_CHECK(E/2.0 == bu::quantity<bu::energy>::from_value(1.25));
// scalar * quantity
BOOST_CHECK(2.0*E == bu::quantity<bu::energy>::from_value(5.0));
// scalar / quantity
BOOST_CHECK(2.0/E == bu::quantity<bu::inverse_energy>::from_value(0.8));
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::length> L(1.0*bu::meters);
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::mass> M(2.0*bu::kilograms);
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::time> T(3.0*bu::seconds);
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::velocity> V(bu::quantity<bu::velocity>::from_value(4.0));
// unit * quantity
BOOST_CHECK(bu::seconds*V == 4.0*bu::meters);
// unit / quantity
BOOST_CHECK(bu::meters/V == 0.25*bu::seconds);
// quantity * unit
BOOST_CHECK(V*bu::seconds == 4.0*bu::meters);
// quantity / unit
BOOST_CHECK(V/bu::meters == 4.0/bu::seconds);
// +quantity
BOOST_CHECK(+V == 4.0*bu::meters_per_second);
// -quantity
BOOST_CHECK(-V == -4.0*bu::meters_per_second);
// quantity + quantity
BOOST_CHECK(V+V == 8.0*bu::meters_per_second);
// quantity - quantity
BOOST_CHECK(V-V == 0.0*bu::meters_per_second);
// quantity * quantity
BOOST_CHECK(V*T == 12.0*bu::meters);
// quantity / quantity
BOOST_CHECK(L/V == 0.25*bu::seconds);
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::area> A(2.0*bu::square_meters);
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::volume> VL(1.0*bu::cubic_meters);
// integer power of quantity
BOOST_CHECK(2.0*bu::pow<2>(L) == A);
// rational power of quantity
BOOST_CHECK((bu::pow< bu::static_rational<2,3> >(VL) == 0.5*A));
// integer root of quantity
BOOST_CHECK(bu::root<2>(A) == std::sqrt(2.0)*L);
// rational root of quantity
BOOST_CHECK((bu::root< bu::static_rational<3,2> >(VL) == 0.5*A));
BOOST_CONSTEXPR_OR_CONST bu::quantity<bu::area> A1(0.0*bu::square_meters),
A2(0.0*bu::square_meters),
A3(1.0*bu::square_meters),
A4(-1.0*bu::square_meters);
// operator==
BOOST_CHECK((A1 == A2) == true);
BOOST_CHECK((A1 == A3) == false);
// operator!=
BOOST_CHECK((A1 != A2) == false);
BOOST_CHECK((A1 != A3) == true);
// operator<
BOOST_CHECK((A1 < A2) == false);
BOOST_CHECK((A1 < A3) == true);
// operator<=
BOOST_CHECK((A1 <= A2) == true);
BOOST_CHECK((A1 <= A3) == true);
// operator>
BOOST_CHECK((A1 > A2) == false);
BOOST_CHECK((A1 > A4) == true);
// operator>=
BOOST_CHECK((A1 >= A2) == true);
BOOST_CHECK((A1 >= A4) == true);
return 0;
}