utility/doc/string_ref.qbk
2019-04-23 15:37:57 -04:00

173 lines
7.7 KiB
Plaintext

[/
/ Copyright (c) 2012 Marshall Clow
/
/ Distributed under the Boost Software License, Version 1.0. (See accompanying
/ file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
/]
[article String_Ref
[quickbook 1.5]
[authors [Clow, Marshall]]
[copyright 2012 Marshall Clow]
[license
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
[@http://www.boost.org/LICENSE_1_0.txt])
]
]
[/===============]
[section Overview]
[/===============]
Boost.StringRef is an implementation of Jeffrey Yaskin's [@http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3442.html N3442:
string_ref: a non-owning reference to a string].
When you are parsing/processing strings from some external source, frequently you want to pass a piece of text to a procedure for specialized processing. The canonical way to do this is as a `std::string`, but that has certain drawbacks:
1) If you are processing a buffer of text (say a HTTP response or the contents of a file), then you have to create the string from the text you want to pass, which involves memory allocation and copying of data.
2) if a routine receives a constant `std::string` and wants to pass a portion of that string to another routine, then it must create a new string of that substring.
3) A routine receives a constant `std::string` and wants to return a portion of the string, then it must create a new string to return.
`string_ref` is designed to solve these efficiency problems. A `string_ref` is a read-only reference to a contiguous sequence of characters, and provides much of the functionality of `std::string`. A `string_ref` is cheap to create, copy and pass by value, because it does not actually own the storage that it points to.
A `string_ref` is implemented as a small struct that contains a pointer to the start of the character data and a count. A `string_ref` is cheap to create and cheap to copy.
`string_ref` acts as a container; it includes all the methods that you would expect in a container, including iteration support, `operator []`, `at` and `size`. It can be used with any of the iterator-based algorithms in the STL - as long as you don't need to change the underlying data (`sort` and `remove`, for example, will not work)
Besides generic container functionality, `string_ref` provides a subset of the interface of `std::string`. This makes it easy to replace parameters of type `const std::string &` with `boost::string_ref`. Like `std::string`, `string_ref` has a static member variable named `npos` to denote the result of failed searches, and to mean "the end".
Because a `string_ref` does not own the data that it "points to", it introduces lifetime issues into code that uses it. The programmer must ensure that the data that a `string_ref` refers to exists as long as the `string_ref` does.
[endsect]
[/===============]
[section Examples]
[/===============]
Integrating `string_ref` into your code is fairly simple. Wherever you pass a `const std::string &` or `std::string` as a parameter, that's a candidate for passing a `boost::string_ref`.
std::string extract_part ( const std::string &bar ) {
return bar.substr ( 2, 3 );
}
if ( extract_part ( "ABCDEFG" ).front() == 'C' ) { /* do something */ }
Let's figure out what happens in this (contrived) example.
First, a temporary string is created from the string literal `"ABCDEFG"`, and it is passed (by reference) to the routine `extract_part`. Then a second string is created in the call `std::string::substr` and returned to `extract_part` (this copy may be elided by RVO). Then `extract_part` returns that string back to the caller (again this copy may be elided). The first temporary string is deallocated, and `front` is called on the second string, and then it is deallocated as well.
Two `std::string`s are created, and two copy operations. That's (potentially) four memory allocations and deallocations, and the associated copying of data.
Now let's look at the same code with `string_ref`:
boost::string_ref extract_part ( boost::string_ref bar ) {
return bar.substr ( 2, 3 );
}
if ( extract_part ( "ABCDEFG" ).front() == "C" ) { /* do something */ }
No memory allocations. No copying of character data. No changes to the code other than the types. There are two `string_ref`s created, and two `string_ref`s copied, but those are cheap operations.
[endsect]
[/=================]
[section:reference Reference ]
[/=================]
The header file "string_ref.hpp" defines a template `boost::basic_string_ref`, and four specializations - for `char` / `wchar_t` / `char16_t` / `char32_t` .
`#include <boost/utility/string_ref.hpp>`
Construction and copying:
BOOST_CONSTEXPR basic_string_ref (); // Constructs an empty string_ref
BOOST_CONSTEXPR basic_string_ref(const charT* str); // Constructs from a NULL-terminated string
BOOST_CONSTEXPR basic_string_ref(const charT* str, size_type len); // Constructs from a pointer, length pair
template<typename Allocator>
basic_string_ref(const std::basic_string<charT, traits, Allocator>& str); // Constructs from a std::string
basic_string_ref (const basic_string_ref &rhs);
basic_string_ref& operator=(const basic_string_ref &rhs);
`string_ref` does not define a move constructor nor a move-assignment operator because copying a `string_ref` is just a cheap as moving one.
Basic container-like functions:
BOOST_CONSTEXPR size_type size() const ;
BOOST_CONSTEXPR size_type length() const ;
BOOST_CONSTEXPR size_type max_size() const ;
BOOST_CONSTEXPR bool empty() const ;
// All iterators are const_iterators
BOOST_CONSTEXPR const_iterator begin() const ;
BOOST_CONSTEXPR const_iterator cbegin() const ;
BOOST_CONSTEXPR const_iterator end() const ;
BOOST_CONSTEXPR const_iterator cend() const ;
const_reverse_iterator rbegin() const ;
const_reverse_iterator crbegin() const ;
const_reverse_iterator rend() const ;
const_reverse_iterator crend() const ;
Access to the individual elements (all of which are const):
BOOST_CONSTEXPR const charT& operator[](size_type pos) const ;
const charT& at(size_t pos) const ;
BOOST_CONSTEXPR const charT& front() const ;
BOOST_CONSTEXPR const charT& back() const ;
BOOST_CONSTEXPR const charT* data() const ;
Modifying the `string_ref` (but not the underlying data):
void clear();
void remove_prefix(size_type n);
void remove_suffix(size_type n);
Searching:
size_type find(basic_string_ref s) const ;
size_type find(charT c) const ;
size_type rfind(basic_string_ref s) const ;
size_type rfind(charT c) const ;
size_type find_first_of(charT c) const ;
size_type find_last_of (charT c) const ;
size_type find_first_of(basic_string_ref s) const ;
size_type find_last_of(basic_string_ref s) const ;
size_type find_first_not_of(basic_string_ref s) const ;
size_type find_first_not_of(charT c) const ;
size_type find_last_not_of(basic_string_ref s) const ;
size_type find_last_not_of(charT c) const ;
String-like operations:
BOOST_CONSTEXPR basic_string_ref substr(size_type pos, size_type n=npos) const ; // Creates a new string_ref
bool starts_with(charT c) const ;
bool starts_with(basic_string_ref x) const ;
bool ends_with(charT c) const ;
bool ends_with(basic_string_ref x) const ;
[endsect]
[/===============]
[section History]
[/===============]
[heading boost 1.71]
* Glen Fernandes updated the implementation of the stream insertion operator to
write directly to the `basic_streambuf` and refactored that functionality into
a common utility.
[heading boost 1.53]
* Introduced
[endsect]