vmd/doc/vmd_whyhow.qbk

175 lines
6.7 KiB
Plaintext

[/
(C) Copyright Edward Diener 2011-2015
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt).
]
[section:vmd_whyhow Why and how to use]
The VMD library provides the ability to create a macro which takes
different types of parameters and can therefore generate different output
depending on the parameter types as well as their values.
This is equivalent to the way that overloaded
functions provide the ability for a singularly named function
to provide different functionality depending on the parameter
types.
In the case of macros, where more than one macro of the same
name but different macro expansion is not allowed, a single macro name
can create different expansions.
As a simple example:
#include <boost/vmd/is_seq.hpp>
#include <boost/vmd/is_tuple.hpp>
#define AMACRO(param) \
BOOST_PP_IIF \
( \
BOOST_VMD_IS_SEQ(param), \
Seq, \
BOOST_PP_IIF \
( \
BOOST_VMD_IS_TUPLE(param), \
Tuple, \
Unknown \
) \
)
If the param passed is a seq the output of
the macro is 'Seq'. If the param passed is
a tuple the output of the macro is 'Tuple'.
Otherwise the output of the macro is 'Unknown'.
Obviously much more complicated cases can be created
in which the types and values of various parameters
are parsed in order to produce variable macro output
depending on the input. Using variadic macros,
macros with variable numbers and types of arguments
give the macro programmer even greater freedom to
design macros with flexibility.
Another feature of the VMD library is the ability to parse
identifiers. A system of registering identifiers which VMD
can recognize has been created. Once an identifier is registered
VMD can recognize it as part of macro input as an identifier and
return the identifier. Furthermore VMD can compare identifiers
for equality or inequality once an identifier has been pre-detected
using VMD's system for pre-detecting identifiers.
As another simple example:
#include <boost/vmd/is_identifier.hpp>
#define BOOST_VMD_REGISTER_NAME (NAME)
#define BOOST_VMD_REGISTER_ADDRESS (ADDRESS)
#define AMACRO1(param) \
BOOST_PP_IIF \
( \
BOOST_VMD_IS_IDENTIFIER(param), \
AMACRO1_IDENTIFIER, \
AMACRO1_NO_IDENTIFIER \
) \
(param)
#define AMACRO1_IDENTIFIER(param) AMACRO1_ ## param
#define AMACRO1_NO_IDENTIFIER(param) Parameter is not an identifier
#define AMACRO1_NAME Identifier is a NAME
#define AMACRO1_ADDRESS Identifier is an ADDRESS
Here we use VMD's identifier registration system to determine and
handle a particular identifier we may be expecting as a macro parameter.
If the input to 'AMACRO1' is 'NAME' the output is 'Identifier is a NAME'.
If the input to 'AMACRO1' is 'ADDRESS' the output is 'Identifier is an ADDRESS'.
Otherwise the output is 'Parameter is not an identifier'.
Identifier pre-detection makes things clearer, allowing us to
detect within VMD whether macro input matches a particular identifier.
Using the same setup as our previous example, but with identifier pre-detection:
#include <boost/vmd/is_identifier.hpp>
#define BOOST_VMD_REGISTER_NAME (NAME)
#define BOOST_VMD_DETECT_NAME_NAME
#define BOOST_VMD_REGISTER_ADDRESS (ADDRESS)
#define BOOST_VMD_DETECT_ADDRESS_ADDRESS
#define AMACRO2(param) \
BOOST_PP_IIF \
( \
BOOST_VMD_IS_IDENTIFIER(param,NAME), \
AMACRO2_NAME, \
BOOST_PP_IIF \
( \
BOOST_VMD_IS_IDENTIFIER(param,ADDRESS), \
AMACRO2_ADDRESS, \
AMACRO2_NO_IDENTIFIER \
) \
) \
(param)
#define AMACRO2_NO_IDENTIFIER(param) Parameter is not a NAME or ADDRESS identifier
#define AMACRO2_NAME(param) Identifier is a NAME
#define AMACRO2_ADDRESS(param) Identifier is an ADDRESS
If the input to 'AMACRO2' is 'NAME' the output is 'Identifier is a NAME'.
If the input to 'AMACRO2' is 'ADDRESS' the output is 'Identifier is an ADDRESS'.
Otherwise the output is 'Parameter is not a NAME or ADDRESS identifier'.
The VMD library also has 2 different subtypes of identifiers which can always be
recognized. The first are numbers, equivalent to the number in Boost PP, numeric
values with a range of 0-256. The second are v-types, which are identifiers starting
with BOOST_VMD_TYPE_ followed by a name for the type of data. As an example, the v-type
of a Boost PP tuple is BOOST_VMD_TYPE_TUPLE and the v-type of a v-type itself is
BOOST_VMD_TYPE_TYPE. All data types have their own v-type identifier; types are
recognized by the VMD macros and may be passed as input data just like any other of
the types of data VMD recognizes.
The VMD identifier system even has a way, to be explained later, for the end-user to
create his own subtype identifiers.
Another reason to use VMD is that VMD understands 'sequences' of the VMD data types. You
can have a sequence of data types and VMD can convert the sequence to any of the Boost
PP data types, or access any individual data type in a sequence.
#include <boost/vmd/elem.hpp>
#include <boost/vmd/to_tuple.hpp>
#define BOOST_VMD_REGISTER_NAME (NAME)
#define ASEQUENCE (1,2) NAME 147 BOOST_VMD_TYPE_NUMBER (a)(b)
BOOST_VMD_TO_TUPLE(ASEQUENCE)
BOOST_VMD_ELEM(2,ASEQUENCE)
Our first expansion returns the tuple:
((1,2),NAME,147,BOOST_VMD_TYPE_NUMBER,(a)(b))
Our second expansion returns the sequence element:
147
Sequences give the macro programmer the ability to accept input
data from the user which may more closely mimic C++ constructs.
Another reason to use VMD is that VMD understands data types.
Besides specifically asking if a particular input is a particular
data type, you can use the macro BOOST_VMD_GET_TYPE to retrieve
the type of any VMD data.
#include <boost/vmd/get_type.hpp>
BOOST_VMD_GET_TYPE((1,2)) // expands to BOOST_VMD_TYPE_TUPLE
BOOST_VMD_GET_TYPE(235) // expands to BOOST_VMD_TYPE_NUMBER
etc.
There is still much more of VMD functionality but hopefully this brief
introduction of what VMD can do will interest you so that you will read on
to understand VMD's functionality for the macro programmer.
[endsect]