yap/example/vector.cpp
2018-03-03 16:20:39 -06:00

146 lines
4.8 KiB
C++

// Copyright (C) 2016-2018 T. Zachary Laine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//[ vector
#include <boost/yap/yap.hpp>
#include <vector>
#include <iostream>
//[ vector_take_nth_xform
struct take_nth
{
template <typename T>
auto operator() (boost::yap::expr_tag<boost::yap::expr_kind::terminal>,
std::vector<T> const & vec)
{ return boost::yap::make_terminal(vec[n]); }
std::size_t n;
};
//]
// A stateful transform that records whether all the std::vector<> terminals
// it has seen are equal to the given size.
struct equal_sizes_impl
{
template <typename T>
auto operator() (boost::yap::expr_tag<boost::yap::expr_kind::terminal>,
std::vector<T> const & vec)
{
auto const expr_size = vec.size();
if (expr_size != size)
value = false;
return 0;
}
std::size_t const size;
bool value;
};
template <typename Expr>
bool equal_sizes (std::size_t size, Expr const & expr)
{
equal_sizes_impl impl{size, true};
boost::yap::transform(boost::yap::as_expr(expr), impl);
return impl.value;
}
// Assigns some expression e to the given vector by evaluating e elementwise,
// to avoid temporaries and allocations.
template <typename T, typename Expr>
std::vector<T> & assign (std::vector<T> & vec, Expr const & e)
{
decltype(auto) expr = boost::yap::as_expr(e);
assert(equal_sizes(vec.size(), expr));
for (std::size_t i = 0, size = vec.size(); i < size; ++i) {
vec[i] = boost::yap::evaluate(
boost::yap::transform(boost::yap::as_expr(expr), take_nth{i}));
}
return vec;
}
// As assign() above, just using +=.
template <typename T, typename Expr>
std::vector<T> & operator+= (std::vector<T> & vec, Expr const & e)
{
decltype(auto) expr = boost::yap::as_expr(e);
assert(equal_sizes(vec.size(), expr));
for (std::size_t i = 0, size = vec.size(); i < size; ++i) {
vec[i] += boost::yap::evaluate(
boost::yap::transform(boost::yap::as_expr(expr), take_nth{i}));
}
return vec;
}
// Define a type trait that identifies std::vectors.
template <typename T>
struct is_vector : std::false_type {};
template <typename T, typename A>
struct is_vector<std::vector<T, A>> : std::true_type {};
// Define all the expression-returning numeric operators we need. Each will
// accept any std::vector<> as any of its arguments, and then any value in the
// remaining argument, if any -- some of the operators below are unary.
BOOST_YAP_USER_UDT_UNARY_OPERATOR(negate, boost::yap::expression, is_vector); // -
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(multiplies, boost::yap::expression, is_vector); // *
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(divides, boost::yap::expression, is_vector); // /
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(modulus, boost::yap::expression, is_vector); // %
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(plus, boost::yap::expression, is_vector); // +
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(minus, boost::yap::expression, is_vector); // -
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(less, boost::yap::expression, is_vector); // <
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(greater, boost::yap::expression, is_vector); // >
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(less_equal, boost::yap::expression, is_vector); // <=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(greater_equal, boost::yap::expression, is_vector); // >=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(equal_to, boost::yap::expression, is_vector); // ==
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(not_equal_to, boost::yap::expression, is_vector); // !=
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(logical_or, boost::yap::expression, is_vector); // ||
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(logical_and, boost::yap::expression, is_vector); // &&
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_and, boost::yap::expression, is_vector); // &
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_or, boost::yap::expression, is_vector); // |
BOOST_YAP_USER_UDT_ANY_BINARY_OPERATOR(bitwise_xor, boost::yap::expression, is_vector); // ^
int main()
{
int i;
int const n = 10;
std::vector<int> a,b,c,d;
std::vector<double> e(n);
for (i = 0; i < n; ++i)
{
a.push_back(i);
b.push_back(2*i);
c.push_back(3*i);
d.push_back(i);
}
// After this point, no allocations occur.
assign(b, 2);
assign(d, a + b * c);
a += if_else(d < 30, b, c);
assign(e, c);
e += e - 4 / (c + 1);
for (i = 0; i < n; ++i)
{
std::cout
<< " a(" << i << ") = " << a[i]
<< " b(" << i << ") = " << b[i]
<< " c(" << i << ") = " << c[i]
<< " d(" << i << ") = " << d[i]
<< " e(" << i << ") = " << e[i]
<< std::endl;
}
return 0;
}
//]