* All copyright lines now have -2020 instead of -present
* All copyright lines include "Facebook, Inc"
* All licenses are now standardized
The copyright in `threading.{h,c}` is not changed because it comes from
zstdmt.
The copyright and license of `divsufsort.{h,c}` is not changed.
It's re-synchronized with nextToUpdate at beginning of each block.
It only needs to be tracked from within zstd_opt block parser.
Made the logic clear, so that no code tried to maintain this variable.
An even better solution would be to make nextToUpdate3
an internal variable of ZSTD_compressBlock_opt_generic().
That would make it possible to remove it from ZSTD_matchState_t,
thus restricting its visibility to only where it's actually useful.
This would require deeper changes though,
since the matchState is the natural structure to transport parameters into and inside the parser.
as it's faster, due to one memory scan instead of two
(confirmed by microbenchmark).
Note : as ZSTD_reduceIndex() is rarely invoked,
it does not translate into a visible gain.
Consider it an exercise in auto-vectorization and micro-benchmarking.
It used to stop on reaching extDict, for simplification.
As a consequence, there was a small loss of performance each time the round buffer would restart from beginning.
It's not a large difference though, just several hundreds of bytes on silesia.
This patch fixes it.
This is a pretty nice speed win.
The new strategy consists in stacking new candidates as if it was a hash chain.
Then, only if there is a need to actually consult the chain, they are batch-updated,
before starting the match search itself.
This is supposed to be beneficial when skipping positions,
which happens a lot when using lazy strategy.
The baseline performance for btlazy2 on my laptop is :
15#calgary.tar : 3265536 -> 955985 (3.416), 7.06 MB/s , 618.0 MB/s
15#enwik7 : 10000000 -> 3067341 (3.260), 4.65 MB/s , 521.2 MB/s
15#silesia.tar : 211984896 -> 58095131 (3.649), 6.20 MB/s , 682.4 MB/s
(only level 15 remains for btlazy2, as this strategy is squeezed between lazy2 and btopt)
After this patch, and keeping all parameters identical,
speed is increased by a pretty good margin (+30-50%),
but compression ratio suffers a bit :
15#calgary.tar : 3265536 -> 958060 (3.408), 9.12 MB/s , 621.1 MB/s
15#enwik7 : 10000000 -> 3078318 (3.249), 6.37 MB/s , 525.1 MB/s
15#silesia.tar : 211984896 -> 58444111 (3.627), 9.89 MB/s , 680.4 MB/s
That's because I kept `1<<searchLog` as a maximum number of candidates to update.
But for a hash chain, this represents the total number of candidates in the chain,
while for the binary, it represents the maximum depth of searches.
Keep in mind that a lot of candidates won't even be visited in the btree,
since they are filtered out by the binary sort.
As a consequence, in the new implementation,
the effective depth of the binary tree is substantially shorter.
To compensate, it's enough to increase `searchLog` value.
Here is the result after adding just +1 to searchLog (level 15 setting in this patch):
15#calgary.tar : 3265536 -> 956311 (3.415), 8.32 MB/s , 611.4 MB/s
15#enwik7 : 10000000 -> 3067655 (3.260), 5.43 MB/s , 535.5 MB/s
15#silesia.tar : 211984896 -> 58113144 (3.648), 8.35 MB/s , 679.3 MB/s
aka, almost the same compression ratio as before,
but with a noticeable speed increase (+20-30%).
This modification makes btlazy2 more competitive.
A new round of paramgrill will be necessary to determine which levels are impacted and could adopt the new strategy.
merging of repcode search into btsearch introduced a small compression ratio regressio at max level :
1.3.2 : 52728769
after repMerge patch : 52760789 (+32020)
A few minor changes have produced this difference.
They can be hard to spot.
This patch buys back about half of the difference,
by no longer inserting position at hc3 when a long match is found there.
It feels strangely counter-intuitive, but works :
after this patch : 52742555 (-18234)
ZSTD_updateTree() expected to be followed by a Bt match finder, which would update zc->nextToUpdate.
With the new optimal match finder, it's not necessarily the case : a match might be found during repcode or hash3, and stops there because it reaches sufficient_len, without even entering the binary tree.
Previous policy was to nonetheless update zc->nextToUpdate, but the current position would not be inserted, creating "holes" in the btree, aka positions that will no longer be searched.
Now, when current position is not inserted, zc->nextToUpdate is not update, expecting ZSTD_updateTree() to fill the tree later on.
Solution selected is that ZSTD_updateTree() takes care of properly setting zc->nextToUpdate,
so that it no longer depends on a future function to do this job.
It took time to get there, as the issue started with a memory sanitizer error.
The pb would have been easier to spot with a proper `assert()`.
So this patch add a few of them.
Additionnally, I discovered that `make test` does not enable `assert()` during CLI tests.
This patch enables them.
Unfortunately, these `assert()` triggered other (unrelated) bugs during CLI tests, mostly within zstdmt.
So this patch also fixes them.
- Changed packed structure for gcc memory access : memory sanitizer would complain that a read "might" reach out-of-bound position on the ground that the `union` is larger than the type accessed.
Now, to avoid this issue, each type is independent.
- ZSTD_CCtxParams_setParameter() : @return provides the value of parameter, clamped/fixed appropriately.
- ZSTDMT : changed constant name to ZSTDMT_JOBSIZE_MIN
- ZSTDMT : multithreading is automatically disabled when srcSize <= ZSTDMT_JOBSIZE_MIN, since only one thread will be used in this case (saves memory and runtime).
- ZSTDMT : nbThreads is automatically clamped on setting the value.