forked from townforge/townforge
75 lines
3.2 KiB
C++
75 lines
3.2 KiB
C++
// Copyright (c) 2019, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "int-util.h"
|
|
#include "cryptonote_basic/difficulty.h"
|
|
|
|
static cryptonote::difficulty_type MKDIFF(uint64_t high, uint64_t low)
|
|
{
|
|
cryptonote::difficulty_type d = high;
|
|
d = (d << 64) | low;
|
|
return d;
|
|
}
|
|
|
|
static crypto::hash MKHASH(uint64_t high, uint64_t low)
|
|
{
|
|
cryptonote::difficulty_type hash_target = high;
|
|
hash_target = (hash_target << 64) | low;
|
|
boost::multiprecision::uint256_t hash_value = std::numeric_limits<boost::multiprecision::uint256_t>::max() / hash_target;
|
|
crypto::hash h;
|
|
uint64_t val;
|
|
val = (hash_value & 0xffffffffffffffff).convert_to<uint64_t>();
|
|
((uint64_t*)&h)[0] = SWAP64LE(val);
|
|
hash_value >>= 64;
|
|
val = (hash_value & 0xffffffffffffffff).convert_to<uint64_t>();
|
|
((uint64_t*)&h)[1] = SWAP64LE(val);
|
|
hash_value >>= 64;
|
|
val = (hash_value & 0xffffffffffffffff).convert_to<uint64_t>();
|
|
((uint64_t*)&h)[2] = SWAP64LE(val);
|
|
hash_value >>= 64;
|
|
val = (hash_value & 0xffffffffffffffff).convert_to<uint64_t>();
|
|
((uint64_t*)&h)[3] = SWAP64LE(val);
|
|
return h;
|
|
}
|
|
|
|
TEST(difficulty, check_hash)
|
|
{
|
|
ASSERT_TRUE(cryptonote::check_hash(MKHASH(0, 1), MKDIFF(0, 1)));
|
|
ASSERT_FALSE(cryptonote::check_hash(MKHASH(0, 1), MKDIFF(0, 2)));
|
|
|
|
ASSERT_TRUE(cryptonote::check_hash(MKHASH(0, 0xffffffffffffffff), MKDIFF(0, 0xffffffffffffffff)));
|
|
ASSERT_FALSE(cryptonote::check_hash(MKHASH(0, 0xffffffffffffffff), MKDIFF(1, 0)));
|
|
|
|
ASSERT_TRUE(cryptonote::check_hash(MKHASH(1, 1), MKDIFF(1, 1)));
|
|
ASSERT_FALSE(cryptonote::check_hash(MKHASH(1, 1), MKDIFF(1, 2)));
|
|
|
|
ASSERT_TRUE(cryptonote::check_hash(MKHASH(0xffffffffffffffff, 1), MKDIFF(0xffffffffffffffff, 1)));
|
|
ASSERT_FALSE(cryptonote::check_hash(MKHASH(0xffffffffffffffff, 1), MKDIFF(0xffffffffffffffff, 2)));
|
|
}
|