Urho3D/Source/ThirdParty/MojoShader/mojoshader_assembler.c

1771 lines
51 KiB
C

/**
* MojoShader; generate shader programs from bytecode of compiled
* Direct3D shaders.
*
* Please see the file LICENSE.txt in the source's root directory.
*
* This file written by Ryan C. Gordon.
*/
// !!! FIXME: this should probably use a formal grammar and not a hand-written
// !!! FIXME: pile of C code.
#define __MOJOSHADER_INTERNAL__ 1
#include "mojoshader_internal.h"
#if !SUPPORT_PROFILE_BYTECODE
#error Shader assembler needs bytecode profile. Fix your build.
#endif
#if DEBUG_ASSEMBLER_PARSER
#define print_debug_token(token, len, val) \
MOJOSHADER_print_debug_token("ASSEMBLER", token, len, val)
#else
#define print_debug_token(token, len, val)
#endif
typedef struct SourcePos
{
const char *filename;
uint32 line;
} SourcePos;
// Context...this is state that changes as we assemble a shader...
typedef struct Context
{
int isfail;
int out_of_memory;
MOJOSHADER_malloc malloc;
MOJOSHADER_free free;
void *malloc_data;
const char *current_file;
int current_position;
ErrorList *errors;
Preprocessor *preprocessor;
MOJOSHADER_shaderType shader_type;
uint8 major_ver;
uint8 minor_ver;
int pushedback;
const char *token; // assembler token!
unsigned int tokenlen; // assembler token!
Token tokenval; // assembler token!
uint32 version_token; // bytecode token!
uint32 tokenbuf[16]; // bytecode tokens!
int tokenbufpos; // bytecode tokens!
DestArgInfo dest_arg;
Buffer *output;
Buffer *token_to_source;
Buffer *ctab;
} Context;
// !!! FIXME: cut and paste between every damned source file follows...
// !!! FIXME: We need to make some sort of ContextBase that applies to all
// !!! FIXME: files and move this stuff to mojoshader_common.c ...
// Convenience functions for allocators...
static inline void out_of_memory(Context *ctx)
{
ctx->isfail = ctx->out_of_memory = 1;
} // out_of_memory
static inline void *Malloc(Context *ctx, const size_t len)
{
void *retval = ctx->malloc((int) len, ctx->malloc_data);
if (retval == NULL)
out_of_memory(ctx);
return retval;
} // Malloc
static inline char *StrDup(Context *ctx, const char *str)
{
char *retval = (char *) Malloc(ctx, strlen(str) + 1);
if (retval != NULL)
strcpy(retval, str);
return retval;
} // StrDup
static inline void Free(Context *ctx, void *ptr)
{
ctx->free(ptr, ctx->malloc_data);
} // Free
static void *MallocBridge(int bytes, void *data)
{
return Malloc((Context *) data, (size_t) bytes);
} // MallocBridge
static void FreeBridge(void *ptr, void *data)
{
Free((Context *) data, ptr);
} // FreeBridge
static void failf(Context *ctx, const char *fmt, ...) ISPRINTF(2,3);
static void failf(Context *ctx, const char *fmt, ...)
{
ctx->isfail = 1;
if (ctx->out_of_memory)
return;
va_list ap;
va_start(ap, fmt);
errorlist_add_va(ctx->errors, ctx->current_file, ctx->current_position, fmt, ap);
va_end(ap);
} // failf
static inline void fail(Context *ctx, const char *reason)
{
failf(ctx, "%s", reason);
} // fail
static inline int isfail(const Context *ctx)
{
return ctx->isfail;
} // isfail
// Shader model version magic...
static inline uint32 ver_ui32(const uint8 major, const uint8 minor)
{
return ( (((uint32) major) << 16) | (((minor) == 0xFF) ? 0 : (minor)) );
} // version_ui32
static inline int shader_version_atleast(const Context *ctx, const uint8 maj,
const uint8 min)
{
return (ver_ui32(ctx->major_ver, ctx->minor_ver) >= ver_ui32(maj, min));
} // shader_version_atleast
static inline int shader_is_pixel(const Context *ctx)
{
return (ctx->shader_type == MOJOSHADER_TYPE_PIXEL);
} // shader_is_pixel
static inline int shader_is_vertex(const Context *ctx)
{
return (ctx->shader_type == MOJOSHADER_TYPE_VERTEX);
} // shader_is_vertex
static inline void pushback(Context *ctx)
{
#if DEBUG_ASSEMBLER_PARSER
printf("ASSEMBLER PUSHBACK\n");
#endif
assert(!ctx->pushedback);
ctx->pushedback = 1;
} // pushback
static Token nexttoken(Context *ctx)
{
if (ctx->pushedback)
ctx->pushedback = 0;
else
{
while (1)
{
ctx->token = preprocessor_nexttoken(ctx->preprocessor,
&ctx->tokenlen,
&ctx->tokenval);
if (preprocessor_outofmemory(ctx->preprocessor))
{
ctx->tokenval = TOKEN_EOI;
ctx->token = NULL;
ctx->tokenlen = 0;
break;
} // if
unsigned int line;
ctx->current_file = preprocessor_sourcepos(ctx->preprocessor,&line);
ctx->current_position = (int) line;
if (ctx->tokenval == TOKEN_BAD_CHARS)
{
fail(ctx, "Bad characters in source file");
continue;
} // else if
else if (ctx->tokenval == TOKEN_PREPROCESSING_ERROR)
{
fail(ctx, ctx->token);
continue;
} // else if
break;
} // while
} // else
print_debug_token(ctx->token, ctx->tokenlen, ctx->tokenval);
return ctx->tokenval;
} // nexttoken
static void output_token_noswap(Context *ctx, const uint32 token)
{
if (!isfail(ctx))
{
buffer_append(ctx->output, &token, sizeof (token));
// We only need a list of these that grows throughout processing, and
// is flattened for reference at the end of the run, so we use a
// Buffer. It's sneaky!
unsigned int pos = 0;
const char *fname = preprocessor_sourcepos(ctx->preprocessor, &pos);
SourcePos srcpos;
memset(&srcpos, '\0', sizeof (SourcePos));
srcpos.line = pos;
srcpos.filename = fname; // cached in preprocessor!
buffer_append(ctx->token_to_source, &srcpos, sizeof (SourcePos));
} // if
} // output_token_noswap
static inline void output_token(Context *ctx, const uint32 token)
{
output_token_noswap(ctx, SWAP32(token));
} // output_token
static void output_comment_bytes(Context *ctx, const uint8 *buf, size_t len)
{
if (len > (0xFFFF * 4)) // length is stored as token count, in 16 bits.
fail(ctx, "Comment field is too big");
else if (!isfail(ctx))
{
const uint32 tokencount = (len / 4) + ((len % 4) ? 1 : 0);
output_token(ctx, 0xFFFE | (tokencount << 16));
while (len >= 4)
{
output_token_noswap(ctx, *((const uint32 *) buf));
len -= 4;
buf += 4;
} // while
if (len > 0) // handle spillover...
{
union { uint8 ui8[4]; uint32 ui32; } overflow;
overflow.ui32 = 0;
memcpy(overflow.ui8, buf, len);
output_token_noswap(ctx, overflow.ui32);
} // if
} // else if
} // output_comment_bytes
static inline void output_comment_string(Context *ctx, const char *str)
{
output_comment_bytes(ctx, (const uint8 *) str, strlen(str));
} // output_comment_string
static int require_comma(Context *ctx)
{
const Token token = nexttoken(ctx);
if (token != ((Token) ','))
{
fail(ctx, "Comma expected");
return 0;
} // if
return 1;
} // require_comma
static int check_token_segment(Context *ctx, const char *str)
{
// !!! FIXME: these are case-insensitive, right?
const size_t len = strlen(str);
if ( (ctx->tokenlen < len) || (strncasecmp(ctx->token, str, len) != 0) )
return 0;
ctx->token += len;
ctx->tokenlen -= len;
return 1;
} // check_token_segment
static int check_token(Context *ctx, const char *str)
{
const size_t len = strlen(str);
if ( (ctx->tokenlen != len) || (strncasecmp(ctx->token, str, len) != 0) )
return 0;
ctx->token += len;
ctx->tokenlen = 0;
return 1;
} // check_token
static int ui32fromtoken(Context *ctx, uint32 *_val)
{
unsigned int i;
for (i = 0; i < ctx->tokenlen; i++)
{
if ((ctx->token[i] < '0') || (ctx->token[i] > '9'))
break;
} // for
if (i == 0)
{
*_val = 0;
return 0;
} // if
const unsigned int len = i;
uint32 val = 0;
uint32 mult = 1;
while (i--)
{
val += ((uint32) (ctx->token[i] - '0')) * mult;
mult *= 10;
} // while
ctx->token += len;
ctx->tokenlen -= len;
*_val = val;
return 1;
} // ui32fromtoken
static int parse_register_name(Context *ctx, RegisterType *rtype, int *rnum)
{
if (nexttoken(ctx) != TOKEN_IDENTIFIER)
{
fail(ctx, "Expected register");
return 0;
} // if
int neednum = 1;
int regnum = 0;
RegisterType regtype = REG_TYPE_TEMP;
// Watch out for substrings! oDepth must be checked before oD, since
// the latter will match either case.
if (check_token_segment(ctx, "oDepth"))
{
regtype = REG_TYPE_DEPTHOUT;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "vFace"))
{
regtype = REG_TYPE_MISCTYPE;
regnum = (int) MISCTYPE_TYPE_FACE;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "vPos"))
{
regtype = REG_TYPE_MISCTYPE;
regnum = (int) MISCTYPE_TYPE_POSITION;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "oPos"))
{
regtype = REG_TYPE_RASTOUT;
regnum = (int) RASTOUT_TYPE_POSITION;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "oFog"))
{
regtype = REG_TYPE_RASTOUT;
regnum = (int) RASTOUT_TYPE_FOG;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "oPts"))
{
regtype = REG_TYPE_RASTOUT;
regnum = (int) RASTOUT_TYPE_POINT_SIZE;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "aL"))
{
regtype = REG_TYPE_LOOP;
neednum = 0;
} // else if
else if (check_token_segment(ctx, "oC"))
regtype = REG_TYPE_COLOROUT;
else if (check_token_segment(ctx, "oT"))
regtype = REG_TYPE_OUTPUT;
else if (check_token_segment(ctx, "oD"))
regtype = REG_TYPE_ATTROUT;
else if (check_token_segment(ctx, "r"))
regtype = REG_TYPE_TEMP;
else if (check_token_segment(ctx, "v"))
regtype = REG_TYPE_INPUT;
else if (check_token_segment(ctx, "c"))
regtype = REG_TYPE_CONST;
else if (check_token_segment(ctx, "i"))
regtype = REG_TYPE_CONSTINT;
else if (check_token_segment(ctx, "b"))
regtype = REG_TYPE_CONSTBOOL;
else if (check_token_segment(ctx, "s"))
regtype = REG_TYPE_SAMPLER;
else if (check_token_segment(ctx, "l"))
regtype = REG_TYPE_LABEL;
else if (check_token_segment(ctx, "p"))
regtype = REG_TYPE_PREDICATE;
else if (check_token_segment(ctx, "o"))
regtype = REG_TYPE_OUTPUT;
else if (check_token_segment(ctx, "a"))
regtype = REG_TYPE_ADDRESS;
else if (check_token_segment(ctx, "t"))
regtype = REG_TYPE_ADDRESS;
//case REG_TYPE_TEMPFLOAT16: // !!! FIXME: don't know this asm string
else
{
fail(ctx, "expected register type");
regtype = REG_TYPE_CONST;
regnum = 0;
neednum = 0;
} // else
// "c[5]" is the same as "c5", so if the token is done, see if next is '['.
if ((neednum) && (ctx->tokenlen == 0))
{
const int tlen = ctx->tokenlen; // we need to protect this for later.
if (nexttoken(ctx) == ((Token) '['))
neednum = 0; // don't need a number on register name itself.
pushback(ctx);
ctx->tokenlen = tlen;
} // if
if (neednum)
{
uint32 ui32 = 0;
if (!ui32fromtoken(ctx, &ui32))
fail(ctx, "Invalid register index");
regnum = (int) ui32;
} // if
// split up REG_TYPE_CONST
if (regtype == REG_TYPE_CONST)
{
if (regnum < 2048)
{
regtype = REG_TYPE_CONST;
regnum -= 0;
} // if
else if (regnum < 4096)
{
regtype = REG_TYPE_CONST2;
regnum -= 2048;
} // if
else if (regnum < 6144)
{
regtype = REG_TYPE_CONST3;
regnum -= 4096;
} // if
else if (regnum < 8192)
{
regtype = REG_TYPE_CONST4;
regnum -= 6144;
} // if
else
{
fail(ctx, "Invalid const register index");
} // else
} // if
*rtype = regtype;
*rnum = regnum;
return 1;
} // parse_register_name
static void set_result_shift(Context *ctx, DestArgInfo *info, const int val)
{
if (info->result_shift != 0)
fail(ctx, "Multiple result shift modifiers");
info->result_shift = val;
} // set_result_shift
static inline int tokenbuf_overflow(Context *ctx)
{
if ( ctx->tokenbufpos >= ((int) (STATICARRAYLEN(ctx->tokenbuf))) )
{
fail(ctx, "Too many tokens");
return 1;
} // if
return 0;
} // tokenbuf_overflow
static int parse_destination_token(Context *ctx)
{
DestArgInfo *info = &ctx->dest_arg;
memset(info, '\0', sizeof (DestArgInfo));
// parse_instruction_token() sets ctx->token to the end of the instruction
// so we can see if there are destination modifiers on the instruction
// itself...
int invalid_modifier = 0;
while ((ctx->tokenlen > 0) && (!invalid_modifier))
{
if (check_token_segment(ctx, "_x2"))
set_result_shift(ctx, info, 0x1);
else if (check_token_segment(ctx, "_x4"))
set_result_shift(ctx, info, 0x2);
else if (check_token_segment(ctx, "_x8"))
set_result_shift(ctx, info, 0x3);
else if (check_token_segment(ctx, "_d8"))
set_result_shift(ctx, info, 0xD);
else if (check_token_segment(ctx, "_d4"))
set_result_shift(ctx, info, 0xE);
else if (check_token_segment(ctx, "_d2"))
set_result_shift(ctx, info, 0xF);
else if (check_token_segment(ctx, "_sat"))
info->result_mod |= MOD_SATURATE;
else if (check_token_segment(ctx, "_pp"))
info->result_mod |= MOD_PP;
else if (check_token_segment(ctx, "_centroid"))
info->result_mod |= MOD_CENTROID;
else
invalid_modifier = 1;
} // while
if (invalid_modifier)
fail(ctx, "Invalid destination modifier");
// !!! FIXME: predicates.
if (nexttoken(ctx) == ((Token) '('))
fail(ctx, "Predicates unsupported at this time"); // !!! FIXME: ...
pushback(ctx); // parse_register_name calls nexttoken().
parse_register_name(ctx, &info->regtype, &info->regnum);
// parse_register_name() can't check this: dest regs might have modifiers.
if (ctx->tokenlen > 0)
fail(ctx, "invalid register name");
// !!! FIXME: can dest registers do relative addressing?
int invalid_writemask = 0;
int implicit_writemask = 0;
if (nexttoken(ctx) != ((Token) '.'))
{
implicit_writemask = 1;
info->writemask = 0xF;
info->writemask0 = info->writemask1 = info->writemask2 = info->writemask3 = 1;
pushback(ctx); // no explicit writemask; do full mask.
} // if
// !!! FIXME: Cg generates code with oDepth.z ... this is a bug, I think.
//else if (scalar_register(ctx->shader_type, info->regtype, info->regnum))
else if ( (scalar_register(ctx->shader_type, info->regtype, info->regnum)) && (info->regtype != REG_TYPE_DEPTHOUT) )
fail(ctx, "Writemask specified for scalar register");
else if (nexttoken(ctx) != TOKEN_IDENTIFIER)
invalid_writemask = 1;
else
{
char tokenbytes[5] = { '\0', '\0', '\0', '\0', '\0' };
const unsigned int tokenlen = ctx->tokenlen;
memcpy(tokenbytes, ctx->token, ((tokenlen < 4) ? tokenlen : 4));
char *ptr = tokenbytes;
if ((*ptr == 'r') || (*ptr == 'x')) { info->writemask0 = 1; ptr++; }
if ((*ptr == 'g') || (*ptr == 'y')) { info->writemask1 = 1; ptr++; }
if ((*ptr == 'b') || (*ptr == 'z')) { info->writemask2 = 1; ptr++; }
if ((*ptr == 'a') || (*ptr == 'w')) { info->writemask3 = 1; ptr++; }
if (*ptr != '\0')
invalid_writemask = 1;
info->writemask = ( ((info->writemask0 & 0x1) << 0) |
((info->writemask1 & 0x1) << 1) |
((info->writemask2 & 0x1) << 2) |
((info->writemask3 & 0x1) << 3) );
} // else
if (invalid_writemask)
fail(ctx, "Invalid writemask");
// !!! FIXME: Cg generates code with oDepth.z ... this is a bug, I think.
if (info->regtype == REG_TYPE_DEPTHOUT)
{
if ( (!implicit_writemask) && ((info->writemask0 + info->writemask1 +
info->writemask2 + info->writemask3) > 1) )
fail(ctx, "Writemask specified for scalar register");
} // if
info->orig_writemask = info->writemask;
if (tokenbuf_overflow(ctx))
return 1;
ctx->tokenbuf[ctx->tokenbufpos++] =
( ((((uint32) 1)) << 31) |
((((uint32) info->regnum) & 0x7ff) << 0) |
((((uint32) info->relative) & 0x1) << 13) |
((((uint32) info->result_mod) & 0xF) << 20) |
((((uint32) info->result_shift) & 0xF) << 24) |
((((uint32) info->writemask) & 0xF) << 16) |
((((uint32) info->regtype) & 0x7) << 28) |
((((uint32) info->regtype) & 0x18) << 8) );
return 1;
} // parse_destination_token
static void set_source_mod(Context *ctx, const int negate,
const SourceMod norm, const SourceMod negated,
SourceMod *srcmod)
{
if ( (*srcmod != SRCMOD_NONE) || (negate && (negated == SRCMOD_NONE)) )
fail(ctx, "Incompatible source modifiers");
else
*srcmod = ((negate) ? negated : norm);
} // set_source_mod
static int parse_source_token_maybe_relative(Context *ctx, const int relok)
{
int retval = 1;
if (tokenbuf_overflow(ctx))
return 0;
// mark this now, so optional relative addressing token is placed second.
uint32 *outtoken = &ctx->tokenbuf[ctx->tokenbufpos++];
*outtoken = 0;
SourceMod srcmod = SRCMOD_NONE;
int negate = 0;
Token token = nexttoken(ctx);
if (token == ((Token) '!'))
srcmod = SRCMOD_NOT;
else if (token == ((Token) '-'))
negate = 1;
else if ( (token == TOKEN_INT_LITERAL) && (check_token(ctx, "1")) )
{
if (nexttoken(ctx) != ((Token) '-'))
fail(ctx, "Unexpected token");
else
srcmod = SRCMOD_COMPLEMENT;
} // else
else
{
pushback(ctx);
} // else
RegisterType regtype;
int regnum;
parse_register_name(ctx, &regtype, &regnum);
if (ctx->tokenlen == 0)
{
if (negate)
set_source_mod(ctx, negate, SRCMOD_NONE, SRCMOD_NEGATE, &srcmod);
} // if
else
{
assert(ctx->tokenlen > 0);
if (check_token_segment(ctx, "_bias"))
set_source_mod(ctx, negate, SRCMOD_BIAS, SRCMOD_BIASNEGATE, &srcmod);
else if (check_token_segment(ctx, "_bx2"))
set_source_mod(ctx, negate, SRCMOD_SIGN, SRCMOD_SIGNNEGATE, &srcmod);
else if (check_token_segment(ctx, "_x2"))
set_source_mod(ctx, negate, SRCMOD_X2, SRCMOD_X2NEGATE, &srcmod);
else if (check_token_segment(ctx, "_dz"))
set_source_mod(ctx, negate, SRCMOD_DZ, SRCMOD_NONE, &srcmod);
else if (check_token_segment(ctx, "_db"))
set_source_mod(ctx, negate, SRCMOD_DZ, SRCMOD_NONE, &srcmod);
else if (check_token_segment(ctx, "_dw"))
set_source_mod(ctx, negate, SRCMOD_DW, SRCMOD_NONE, &srcmod);
else if (check_token_segment(ctx, "_da"))
set_source_mod(ctx, negate, SRCMOD_DW, SRCMOD_NONE, &srcmod);
else if (check_token_segment(ctx, "_abs"))
set_source_mod(ctx, negate, SRCMOD_ABS, SRCMOD_ABSNEGATE, &srcmod);
else
fail(ctx, "Invalid source modifier");
} // else
uint32 relative = 0;
if (nexttoken(ctx) != ((Token) '['))
pushback(ctx); // not relative addressing?
else
{
if (!relok)
fail(ctx, "Relative addressing not permitted here.");
else
retval++;
parse_source_token_maybe_relative(ctx, 0);
relative = 1;
if (nexttoken(ctx) != ((Token) '+'))
pushback(ctx);
else
{
// !!! FIXME: maybe c3[a0.x + 5] is legal and becomes c[a0.x + 8] ?
if (regnum != 0)
fail(ctx, "Relative addressing with explicit register number.");
uint32 ui32 = 0;
if ( (nexttoken(ctx) != TOKEN_INT_LITERAL) ||
(!ui32fromtoken(ctx, &ui32)) ||
(ctx->tokenlen != 0) )
{
fail(ctx, "Invalid relative addressing offset");
} // if
regnum += (int) ui32;
} // else
if (nexttoken(ctx) != ((Token) ']'))
fail(ctx, "Expected ']'");
} // else
int invalid_swizzle = 0;
uint32 swizzle = 0;
if (nexttoken(ctx) != ((Token) '.'))
{
swizzle = 0xE4; // 0xE4 == 11100100 ... 0 1 2 3. No swizzle.
pushback(ctx); // no explicit writemask; do full mask.
} // if
else if (scalar_register(ctx->shader_type, regtype, regnum))
fail(ctx, "Swizzle specified for scalar register");
else if (nexttoken(ctx) != TOKEN_IDENTIFIER)
invalid_swizzle = 1;
else
{
char tokenbytes[5] = { '\0', '\0', '\0', '\0', '\0' };
const unsigned int tokenlen = ctx->tokenlen;
memcpy(tokenbytes, ctx->token, ((tokenlen < 4) ? tokenlen : 4));
// deal with shortened form (.x = .xxxx, etc).
if (tokenlen == 1)
tokenbytes[1] = tokenbytes[2] = tokenbytes[3] = tokenbytes[0];
else if (tokenlen == 2)
tokenbytes[2] = tokenbytes[3] = tokenbytes[1];
else if (tokenlen == 3)
tokenbytes[3] = tokenbytes[2];
else if (tokenlen != 4)
invalid_swizzle = 1;
tokenbytes[4] = '\0';
uint32 val = 0;
int i;
for (i = 0; i < 4; i++)
{
const int component = (int) tokenbytes[i];
switch (component)
{
case 'r': case 'x': val = 0; break;
case 'g': case 'y': val = 1; break;
case 'b': case 'z': val = 2; break;
case 'a': case 'w': val = 3; break;
default: invalid_swizzle = 1; break;
} // switch
swizzle |= (val << (i * 2));
} // for
} // else
if (invalid_swizzle)
fail(ctx, "Invalid swizzle");
*outtoken = ( ((((uint32) 1)) << 31) |
((((uint32) regnum) & 0x7ff) << 0) |
((((uint32) relative) & 0x1) << 13) |
((((uint32) swizzle) & 0xFF) << 16) |
((((uint32) srcmod) & 0xF) << 24) |
((((uint32) regtype) & 0x7) << 28) |
((((uint32) regtype) & 0x18) << 8) );
return retval;
} // parse_source_token_maybe_relative
static inline int parse_source_token(Context *ctx)
{
return parse_source_token_maybe_relative(ctx, 1);
} // parse_source_token
static int parse_args_NULL(Context *ctx)
{
return 1;
} // parse_args_NULL
static int parse_num(Context *ctx, const int floatok, uint32 *value)
{
union { float f; int32 si32; uint32 ui32; } cvt;
int negative = 0;
Token token = nexttoken(ctx);
if (token == ((Token) '-'))
{
negative = 1;
token = nexttoken(ctx);
} // if
if (token == TOKEN_INT_LITERAL)
{
int d = 0;
sscanf(ctx->token, "%d", &d);
if (floatok)
cvt.f = (float) ((negative) ? -d : d);
else
cvt.si32 = (int32) ((negative) ? -d : d);
} // if
else if (token == TOKEN_FLOAT_LITERAL)
{
if (!floatok)
{
fail(ctx, "Expected whole number");
*value = 0;
return 0;
} // if
sscanf(ctx->token, "%f", &cvt.f);
if (negative)
cvt.f = -cvt.f;
} // if
else
{
fail(ctx, "Expected number");
*value = 0;
return 0;
} // else
*value = cvt.ui32;
return 1;
} // parse_num
static int parse_args_DEFx(Context *ctx, const int isflt)
{
parse_destination_token(ctx);
require_comma(ctx);
parse_num(ctx, isflt, &ctx->tokenbuf[ctx->tokenbufpos++]);
require_comma(ctx);
parse_num(ctx, isflt, &ctx->tokenbuf[ctx->tokenbufpos++]);
require_comma(ctx);
parse_num(ctx, isflt, &ctx->tokenbuf[ctx->tokenbufpos++]);
require_comma(ctx);
parse_num(ctx, isflt, &ctx->tokenbuf[ctx->tokenbufpos++]);
return 6;
} // parse_args_DEFx
static int parse_args_DEF(Context *ctx)
{
return parse_args_DEFx(ctx, 1);
} // parse_args_DEF
static int parse_args_DEFI(Context *ctx)
{
return parse_args_DEFx(ctx, 0);
} // parse_args_DEFI
static int parse_args_DEFB(Context *ctx)
{
parse_destination_token(ctx);
require_comma(ctx);
// !!! FIXME: do a TOKEN_TRUE and TOKEN_FALSE? Is this case-sensitive?
const Token token = nexttoken(ctx);
int bad = 0;
if (token != TOKEN_IDENTIFIER)
bad = 1;
else if (check_token_segment(ctx, "true"))
ctx->tokenbuf[ctx->tokenbufpos++] = 1;
else if (check_token_segment(ctx, "false"))
ctx->tokenbuf[ctx->tokenbufpos++] = 0;
else
bad = 1;
if (ctx->tokenlen != 0)
bad = 1;
if (bad)
fail(ctx, "Expected 'true' or 'false'");
return 3;
} // parse_args_DEFB
static int parse_dcl_usage(Context *ctx, uint32 *val, int *issampler)
{
size_t i;
static const char *samplerusagestrs[] = { "_2d", "_cube", "_volume" };
static const char *usagestrs[] = {
"_position", "_blendweight", "_blendindices", "_normal", "_psize",
"_texcoord", "_tangent", "_binormal", "_tessfactor", "_positiont",
"_color", "_fog", "_depth", "_sample"
};
for (i = 0; i < STATICARRAYLEN(usagestrs); i++)
{
if (check_token_segment(ctx, usagestrs[i]))
{
*issampler = 0;
*val = i;
return 1;
} // if
} // for
for (i = 0; i < STATICARRAYLEN(samplerusagestrs); i++)
{
if (check_token_segment(ctx, samplerusagestrs[i]))
{
*issampler = 1;
*val = i + 2;
return 1;
} // if
} // for
*issampler = 0;
*val = 0;
return 0;
} // parse_dcl_usage
static int parse_args_DCL(Context *ctx)
{
int issampler = 0;
uint32 usage = 0;
uint32 index = 0;
ctx->tokenbufpos++; // save a spot for the usage/index token.
ctx->tokenbuf[0] = 0;
// parse_instruction_token() sets ctx->token to the end of the instruction
// so we can see if there are destination modifiers on the instruction
// itself...
if (parse_dcl_usage(ctx, &usage, &issampler))
{
if ((ctx->tokenlen > 0) && (*ctx->token != '_'))
{
if (!ui32fromtoken(ctx, &index))
fail(ctx, "Expected usage index");
} // if
} // if
parse_destination_token(ctx);
const int samplerreg = (ctx->dest_arg.regtype == REG_TYPE_SAMPLER);
if (issampler != samplerreg)
fail(ctx, "Invalid usage");
else if (samplerreg)
ctx->tokenbuf[0] = (usage << 27) | 0x80000000;
else
ctx->tokenbuf[0] = usage | (index << 16) | 0x80000000;
return 3;
} // parse_args_DCL
static int parse_args_D(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx);
return retval;
} // parse_args_D
static int parse_args_S(Context *ctx)
{
int retval = 1;
retval += parse_source_token(ctx);
return retval;
} // parse_args_S
static int parse_args_SS(Context *ctx)
{
int retval = 1;
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
return retval;
} // parse_args_SS
static int parse_args_DS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
return retval;
} // parse_args_DS
static int parse_args_DSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
return retval;
} // parse_args_DSS
static int parse_args_DSSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
return retval;
} // parse_args_DSSS
static int parse_args_DSSSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
require_comma(ctx);
retval += parse_source_token(ctx);
return retval;
} // parse_args_DSSSS
static int parse_args_SINCOS(Context *ctx)
{
// this opcode needs extra registers for sm2 and lower.
if (!shader_version_atleast(ctx, 3, 0))
return parse_args_DSSS(ctx);
return parse_args_DS(ctx);
} // parse_args_SINCOS
static int parse_args_TEXCRD(Context *ctx)
{
// added extra register in ps_1_4.
if (shader_version_atleast(ctx, 1, 4))
return parse_args_DS(ctx);
return parse_args_D(ctx);
} // parse_args_TEXCRD
static int parse_args_TEXLD(Context *ctx)
{
// different registers in px_1_3, ps_1_4, and ps_2_0!
if (shader_version_atleast(ctx, 2, 0))
return parse_args_DSS(ctx);
else if (shader_version_atleast(ctx, 1, 4))
return parse_args_DS(ctx);
return parse_args_D(ctx);
} // parse_args_TEXLD
// one args function for each possible sequence of opcode arguments.
typedef int (*args_function)(Context *ctx);
// Lookup table for instruction opcodes...
typedef struct
{
const char *opcode_string;
args_function parse_args;
} Instruction;
static const Instruction instructions[] =
{
#define INSTRUCTION_STATE(op, opstr, s, a, t) { opstr, parse_args_##a },
#define INSTRUCTION(op, opstr, slots, a, t) { opstr, parse_args_##a },
#define MOJOSHADER_DO_INSTRUCTION_TABLE 1
#include "mojoshader_internal.h"
#undef MOJOSHADER_DO_INSTRUCTION_TABLE
#undef INSTRUCTION
#undef INSTRUCTION_STATE
};
static int parse_condition(Context *ctx, uint32 *controls)
{
static const char *comps[] = { "_gt", "_eq", "_ge", "_lt", "_ne", "_le" };
size_t i;
if (ctx->tokenlen >= 3)
{
for (i = 0; i < STATICARRAYLEN(comps); i++)
{
if (check_token_segment(ctx, comps[i]))
{
*controls = (uint32) (i + 1);
return 1;
} // if
} // for
} // if
return 0;
} // parse_condition
static int parse_instruction_token(Context *ctx, Token token)
{
int coissue = 0;
int predicated = 0;
if (token == ((Token) '+'))
{
coissue = 1;
token = nexttoken(ctx);
} // if
if (token != TOKEN_IDENTIFIER)
{
fail(ctx, "Expected instruction");
return 0;
} // if
uint32 controls = 0;
uint32 opcode = OPCODE_TEXLD;
const char *origtoken = ctx->token;
const unsigned int origtokenlen = ctx->tokenlen;
// This might need to be TEXLD instead of TEXLDP.
if (check_token_segment(ctx, "TEXLDP"))
controls = CONTROL_TEXLDP;
// This might need to be TEXLD instead of TEXLDB.
else if (check_token_segment(ctx, "TEXLDB"))
controls = CONTROL_TEXLDB;
else // find the instruction.
{
size_t i;
for (i = 0; i < STATICARRAYLEN(instructions); i++)
{
const char *opcode_string = instructions[i].opcode_string;
if (opcode_string == NULL)
continue; // skip this.
else if (!check_token_segment(ctx, opcode_string))
continue; // not us.
else if ((ctx->tokenlen > 0) && (*ctx->token != '_'))
{
ctx->token = origtoken;
ctx->tokenlen = origtokenlen;
continue; // not the match: TEXLD when we wanted TEXLDL, etc.
} // if
break; // found it!
} // for
opcode = (uint32) i;
// This might need to be IFC instead of IF.
if (opcode == OPCODE_IF)
{
if (parse_condition(ctx, &controls))
opcode = OPCODE_IFC;
} // if
// This might need to be BREAKC instead of BREAK.
else if (opcode == OPCODE_BREAK)
{
if (parse_condition(ctx, &controls))
opcode = OPCODE_BREAKC;
} // else if
// SETP has a conditional code, always.
else if (opcode == OPCODE_SETP)
{
if (!parse_condition(ctx, &controls))
fail(ctx, "SETP requires a condition");
} // else if
} // else
if ( (opcode == STATICARRAYLEN(instructions)) ||
((ctx->tokenlen > 0) && (ctx->token[0] != '_')) )
{
char opstr[32];
const int len = Min(sizeof (opstr) - 1, origtokenlen);
memcpy(opstr, origtoken, len);
opstr[len] = '\0';
failf(ctx, "Unknown instruction '%s'", opstr);
return 0;
} // if
const Instruction *instruction = &instructions[opcode];
// !!! FIXME: predicated instructions
ctx->tokenbufpos = 0;
const int tokcount = instruction->parse_args(ctx);
// insttoks bits are reserved and should be zero if < SM2.
const uint32 insttoks = shader_version_atleast(ctx, 2, 0) ? tokcount-1 : 0;
// write out the instruction token.
output_token(ctx, ((opcode & 0xFFFF) << 0) |
((controls & 0xFF) << 16) |
((insttoks & 0xF) << 24) |
((coissue) ? 0x40000000 : 0x00000000) |
((predicated) ? 0x10000000 : 0x00000000) );
// write out the argument tokens.
int i;
for (i = 0; i < (tokcount-1); i++)
output_token(ctx, ctx->tokenbuf[i]);
return 1;
} // parse_instruction_token
static void parse_version_token(Context *ctx)
{
int bad = 0;
int dot_form = 0;
uint32 shader_type = 0;
if (nexttoken(ctx) != TOKEN_IDENTIFIER)
bad = 1;
else if (check_token_segment(ctx, "vs"))
{
ctx->shader_type = MOJOSHADER_TYPE_VERTEX;
shader_type = 0xFFFE;
} // if
else if (check_token_segment(ctx, "ps"))
{
ctx->shader_type = MOJOSHADER_TYPE_PIXEL;
shader_type = 0xFFFF;
} // if
else
{
// !!! FIXME: geometry shaders?
bad = 1;
} // else
dot_form = ((!bad) && (ctx->tokenlen == 0)); // it's in xs.x.x form?
uint32 major = 0;
uint32 minor = 0;
if (dot_form)
{
Token t = TOKEN_UNKNOWN;
if (!bad)
{
t = nexttoken(ctx);
// stupid lexer sees "vs.2.0" and makes the ".2" into a float.
if (t == ((Token) '.'))
t = nexttoken(ctx);
else
{
if ((t != TOKEN_FLOAT_LITERAL) || (ctx->token[0] != '.'))
bad = 1;
else
{
ctx->tokenval = t = TOKEN_INT_LITERAL;
ctx->token++;
ctx->tokenlen--;
} // else
} // else
} // if
if (!bad)
{
if (t != TOKEN_INT_LITERAL)
bad = 1;
else if (!ui32fromtoken(ctx, &major))
bad = 1;
} // if
if (!bad)
{
t = nexttoken(ctx);
// stupid lexer sees "vs.2.0" and makes the ".2" into a float.
if (t == ((Token) '.'))
t = nexttoken(ctx);
else
{
if ((t != TOKEN_FLOAT_LITERAL) || (ctx->token[0] != '.'))
bad = 1;
else
{
ctx->tokenval = t = TOKEN_INT_LITERAL;
ctx->token++;
ctx->tokenlen--;
} // else
} // else
} // if
if (!bad)
{
if ((t == TOKEN_INT_LITERAL) && (ui32fromtoken(ctx, &minor)))
; // good to go.
else if ((t == TOKEN_IDENTIFIER) && (check_token_segment(ctx, "x")))
minor = 1;
else if ((t == TOKEN_IDENTIFIER) && (check_token_segment(ctx, "sw")))
minor = 255;
else
bad = 1;
} // if
} // if
else
{
if (!check_token_segment(ctx, "_"))
bad = 1;
else if (!ui32fromtoken(ctx, &major))
bad = 1;
else if (!check_token_segment(ctx, "_"))
bad = 1;
else if (check_token_segment(ctx, "x"))
minor = 1;
else if (check_token_segment(ctx, "sw"))
minor = 255;
else if (!ui32fromtoken(ctx, &minor))
bad = 1;
} // else
if ((!bad) && (ctx->tokenlen != 0))
bad = 1;
if (bad)
fail(ctx, "Expected valid version string");
ctx->major_ver = major;
ctx->minor_ver = minor;
ctx->version_token = (shader_type << 16) | (major << 8) | (minor << 0);
output_token(ctx, ctx->version_token);
} // parse_version_token
static void parse_phase_token(Context *ctx)
{
output_token(ctx, 0x0000FFFD); // phase token always 0x0000FFFD.
} // parse_phase_token
static void parse_end_token(Context *ctx)
{
// We don't emit the end token bits here, since it's valid for a shader
// to not specify an "end" string at all; it's implicit, in that case.
// Instead, we make sure if we see "end" that it's the last thing we see.
if (nexttoken(ctx) != TOKEN_EOI)
fail(ctx, "Content after END");
} // parse_end_token
static void parse_token(Context *ctx, const Token token)
{
if (token != TOKEN_IDENTIFIER)
parse_instruction_token(ctx, token); // might be a coissue '+', etc.
else
{
if (check_token(ctx, "end"))
parse_end_token(ctx);
else if (check_token(ctx, "phase"))
parse_phase_token(ctx);
else
parse_instruction_token(ctx, token);
} // if
} // parse_token
static void destroy_context(Context *ctx)
{
if (ctx != NULL)
{
MOJOSHADER_free f = ((ctx->free != NULL) ? ctx->free : MOJOSHADER_internal_free);
void *d = ctx->malloc_data;
preprocessor_end(ctx->preprocessor);
errorlist_destroy(ctx->errors);
buffer_destroy(ctx->ctab);
buffer_destroy(ctx->token_to_source);
buffer_destroy(ctx->output);
f(ctx, d);
} // if
} // destroy_context
static Context *build_context(const char *filename,
const char *source, unsigned int sourcelen,
const MOJOSHADER_preprocessorDefine *defines,
unsigned int define_count,
MOJOSHADER_includeOpen include_open,
MOJOSHADER_includeClose include_close,
MOJOSHADER_malloc m, MOJOSHADER_free f, void *d)
{
if (!m) m = MOJOSHADER_internal_malloc;
if (!f) f = MOJOSHADER_internal_free;
if (!include_open) include_open = MOJOSHADER_internal_include_open;
if (!include_close) include_close = MOJOSHADER_internal_include_close;
Context *ctx = (Context *) m(sizeof (Context), d);
if (ctx == NULL)
return NULL;
memset(ctx, '\0', sizeof (Context));
ctx->malloc = m;
ctx->free = f;
ctx->malloc_data = d;
ctx->current_position = MOJOSHADER_POSITION_BEFORE;
const size_t outblk = sizeof (uint32) * 4 * 64; // 64 4-token instrs.
ctx->output = buffer_create(outblk, MallocBridge, FreeBridge, ctx);
if (ctx->output == NULL)
goto build_context_failed;
const size_t mapblk = sizeof (SourcePos) * 4 * 64; // 64 * 4-tokens.
ctx->token_to_source = buffer_create(mapblk, MallocBridge, FreeBridge, ctx);
if (ctx->token_to_source == NULL)
goto build_context_failed;
ctx->errors = errorlist_create(MallocBridge, FreeBridge, ctx);
if (ctx->errors == NULL)
goto build_context_failed;
ctx->preprocessor = preprocessor_start(filename, source, sourcelen,
include_open, include_close,
defines, define_count, 1,
MallocBridge, FreeBridge, ctx);
if (ctx->preprocessor == NULL)
goto build_context_failed;
return ctx;
build_context_failed: // ctx is allocated and zeroed before this is called.
destroy_context(ctx);
return NULL;
} // build_context
static const MOJOSHADER_parseData *build_failed_assembly(Context *ctx)
{
assert(isfail(ctx));
if (ctx->out_of_memory)
return &MOJOSHADER_out_of_mem_data;
MOJOSHADER_parseData *retval = NULL;
retval = (MOJOSHADER_parseData*) Malloc(ctx, sizeof(MOJOSHADER_parseData));
if (retval == NULL)
return &MOJOSHADER_out_of_mem_data;
memset(retval, '\0', sizeof (MOJOSHADER_parseData));
retval->malloc = (ctx->malloc == MOJOSHADER_internal_malloc) ? NULL : ctx->malloc;
retval->free = (ctx->free == MOJOSHADER_internal_free) ? NULL : ctx->free;
retval->malloc_data = ctx->malloc_data;
retval->error_count = errorlist_count(ctx->errors);
retval->errors = errorlist_flatten(ctx->errors);
if (ctx->out_of_memory)
{
Free(ctx, retval->errors);
Free(ctx, retval);
return &MOJOSHADER_out_of_mem_data;
} // if
return retval;
} // build_failed_assembly
static uint32 add_ctab_bytes(Context *ctx, const uint8 *bytes, const size_t len)
{
if (isfail(ctx))
return 0;
const size_t extra = CTAB_SIZE + sizeof (uint32);
const ssize_t pos = buffer_find(ctx->ctab, extra, bytes, len);
if (pos >= 0) // blob is already in here.
return ((uint32) pos) - sizeof (uint32);
// add it to the byte pile...
const uint32 retval = ((uint32) buffer_size(ctx->ctab)) - sizeof (uint32);
buffer_append(ctx->ctab, bytes, len);
return retval;
} // add_ctab_bytes
static inline uint32 add_ctab_string(Context *ctx, const char *str)
{
return add_ctab_bytes(ctx, (const uint8 *) str, strlen(str) + 1);
} // add_ctab_string
static uint32 add_ctab_typeinfo(Context *ctx, const MOJOSHADER_symbolTypeInfo *info);
static uint32 add_ctab_members(Context *ctx, const MOJOSHADER_symbolTypeInfo *info)
{
unsigned int i;
const size_t len = info->member_count * CMEMBERINFO_SIZE;
uint8 *bytes = (uint8 *) Malloc(ctx, len);
if (bytes == NULL)
return 0;
union { uint8 *ui8; uint16 *ui16; uint32 *ui32; } ptr;
ptr.ui8 = bytes;
for (i = 0; i < info->member_count; i++)
{
const MOJOSHADER_symbolStructMember *member = &info->members[i];
*(ptr.ui32++) = SWAP32(add_ctab_string(ctx, member->name));
*(ptr.ui32++) = SWAP32(add_ctab_typeinfo(ctx, &member->info));
} // for
const uint32 retval = add_ctab_bytes(ctx, bytes, len);
Free(ctx, bytes);
return retval;
} // add_ctab_members
static uint32 add_ctab_typeinfo(Context *ctx, const MOJOSHADER_symbolTypeInfo *info)
{
uint8 bytes[CTYPEINFO_SIZE];
union { uint8 *ui8; uint16 *ui16; uint32 *ui32; } ptr;
ptr.ui8 = bytes;
*(ptr.ui16++) = SWAP16((uint16) info->parameter_class);
*(ptr.ui16++) = SWAP16((uint16) info->parameter_type);
*(ptr.ui16++) = SWAP16((uint16) info->rows);
*(ptr.ui16++) = SWAP16((uint16) info->columns);
*(ptr.ui16++) = SWAP16((uint16) info->elements);
*(ptr.ui16++) = SWAP16((uint16) info->member_count);
*(ptr.ui32++) = SWAP32(add_ctab_members(ctx, info));
return add_ctab_bytes(ctx, bytes, sizeof (bytes));
} // add_ctab_typeinfo
static uint32 add_ctab_info(Context *ctx, const MOJOSHADER_symbol *symbols,
const unsigned int symbol_count)
{
unsigned int i;
const size_t len = symbol_count * CINFO_SIZE;
uint8 *bytes = (uint8 *) Malloc(ctx, len);
if (bytes == NULL)
return 0;
union { uint8 *ui8; uint16 *ui16; uint32 *ui32; } ptr;
ptr.ui8 = bytes;
for (i = 0; i < symbol_count; i++)
{
const MOJOSHADER_symbol *sym = &symbols[i];
*(ptr.ui32++) = SWAP32(add_ctab_string(ctx, sym->name));
*(ptr.ui16++) = SWAP16((uint16) sym->register_set);
*(ptr.ui16++) = SWAP16((uint16) sym->register_index);
*(ptr.ui16++) = SWAP16((uint16) sym->register_count);
*(ptr.ui16++) = SWAP16(0); // reserved
*(ptr.ui32++) = SWAP32(add_ctab_typeinfo(ctx, &sym->info));
*(ptr.ui32++) = SWAP32(0); // !!! FIXME: default value.
} // for
const uint32 retval = add_ctab_bytes(ctx, bytes, len);
Free(ctx, bytes);
return retval;
} // add_ctab_info
static void output_ctab(Context *ctx, const MOJOSHADER_symbol *symbols,
unsigned int symbol_count, const char *creator)
{
const size_t tablelen = CTAB_SIZE + sizeof (uint32);
ctx->ctab = buffer_create(256, MallocBridge, FreeBridge, ctx);
if (ctx->ctab == NULL)
return; // out of memory.
uint32 *table = (uint32 *) buffer_reserve(ctx->ctab, tablelen);
if (table == NULL)
{
buffer_destroy(ctx->ctab);
ctx->ctab = NULL;
return; // out of memory.
} // if
*(table++) = SWAP32(CTAB_ID);
*(table++) = SWAP32(CTAB_SIZE);
*(table++) = SWAP32(add_ctab_string(ctx, creator));
*(table++) = SWAP32(ctx->version_token);
*(table++) = SWAP32(((uint32) symbol_count));
*(table++) = SWAP32(add_ctab_info(ctx, symbols, symbol_count));
*(table++) = SWAP32(0); // build flags.
*(table++) = SWAP32(add_ctab_string(ctx, "")); // !!! FIXME: target?
const size_t ctablen = buffer_size(ctx->ctab);
uint8 *buf = (uint8 *) buffer_flatten(ctx->ctab);
if (buf != NULL)
{
output_comment_bytes(ctx, buf, ctablen);
Free(ctx, buf);
} // if
buffer_destroy(ctx->ctab);
ctx->ctab = NULL;
} // output_ctab
static void output_comments(Context *ctx, const char **comments,
unsigned int comment_count,
const MOJOSHADER_symbol *symbols,
unsigned int symbol_count)
{
if (isfail(ctx))
return;
// make error messages sane if CTAB fails, etc.
const char *prev_fname = ctx->current_file;
const int prev_position = ctx->current_position;
ctx->current_file = NULL;
ctx->current_position = MOJOSHADER_POSITION_BEFORE;
const char *creator = "MojoShader revision " MOJOSHADER_CHANGESET;
if (symbol_count > 0)
output_ctab(ctx, symbols, symbol_count, creator);
else
output_comment_string(ctx, creator);
unsigned int i;
for (i = 0; i < comment_count; i++)
output_comment_string(ctx, comments[i]);
ctx->current_file = prev_fname;
ctx->current_position = prev_position;
} // output_comments
static const MOJOSHADER_parseData *build_final_assembly(Context *ctx)
{
if (isfail(ctx))
return build_failed_assembly(ctx);
// get the final bytecode!
const unsigned int output_len = (unsigned int) buffer_size(ctx->output);
unsigned char *bytecode = (unsigned char *) buffer_flatten(ctx->output);
buffer_destroy(ctx->output);
ctx->output = NULL;
if (bytecode == NULL)
return build_failed_assembly(ctx);
// This validates the shader; there are lots of things that are
// invalid, but will successfully parse in the assembler,
// generating bad bytecode; this will catch them without us
// having to duplicate most of the validation here.
// It also saves us the trouble of duplicating all the other work,
// like setting up the uniforms list, etc.
MOJOSHADER_parseData *retval = (MOJOSHADER_parseData *)
MOJOSHADER_parse(MOJOSHADER_PROFILE_BYTECODE,
bytecode, output_len, NULL, 0, NULL, 0,
ctx->malloc, ctx->free, ctx->malloc_data);
Free(ctx, bytecode);
SourcePos *token_to_src = NULL;
if (retval->error_count > 0)
token_to_src = (SourcePos *) buffer_flatten(ctx->token_to_source);
buffer_destroy(ctx->token_to_source);
ctx->token_to_source = NULL;
if (retval->error_count > 0)
{
if (token_to_src == NULL)
{
assert(ctx->out_of_memory);
MOJOSHADER_freeParseData(retval);
return build_failed_assembly(ctx);
} // if
// on error, map the bytecode back to a line number.
int i;
for (i = 0; i < retval->error_count; i++)
{
MOJOSHADER_error *error = &retval->errors[i];
if (error->error_position >= 0)
{
assert(retval != &MOJOSHADER_out_of_mem_data);
assert((error->error_position % sizeof (uint32)) == 0);
const size_t pos = error->error_position / sizeof(uint32);
if (pos >= output_len)
error->error_position = -1; // oh well.
else
{
const SourcePos *srcpos = &token_to_src[pos];
Free(ctx, (void *) error->filename);
char *fname = NULL;
if (srcpos->filename != NULL)
fname = StrDup(ctx, srcpos->filename);
error->error_position = srcpos->line;
error->filename = fname; // may be NULL, that's okay.
} // else
} // if
} // for
Free(ctx, token_to_src);
} // if
return retval;
} // build_final_assembly
// API entry point...
const MOJOSHADER_parseData *MOJOSHADER_assemble(const char *filename,
const char *source, unsigned int sourcelen,
const char **comments, unsigned int comment_count,
const MOJOSHADER_symbol *symbols,
unsigned int symbol_count,
const MOJOSHADER_preprocessorDefine *defines,
unsigned int define_count,
MOJOSHADER_includeOpen include_open,
MOJOSHADER_includeClose include_close,
MOJOSHADER_malloc m, MOJOSHADER_free f, void *d)
{
const MOJOSHADER_parseData *retval = NULL;
Context *ctx = NULL;
if ( ((m == NULL) && (f != NULL)) || ((m != NULL) && (f == NULL)) )
return &MOJOSHADER_out_of_mem_data; // supply both or neither.
ctx = build_context(filename, source, sourcelen, defines, define_count,
include_open, include_close, m, f, d);
if (ctx == NULL)
return &MOJOSHADER_out_of_mem_data;
// Version token always comes first.
parse_version_token(ctx);
output_comments(ctx, comments, comment_count, symbols, symbol_count);
// parse out the rest of the tokens after the version token...
Token token;
while ((token = nexttoken(ctx)) != TOKEN_EOI)
parse_token(ctx, token);
ctx->current_file = NULL;
ctx->current_position = MOJOSHADER_POSITION_AFTER;
output_token(ctx, 0x0000FFFF); // end token always 0x0000FFFF.
retval = build_final_assembly(ctx);
destroy_context(ctx);
return retval;
} // MOJOSHADER_assemble
// end of mojoshader_assembler.c ...