Urho3D/bin/CoreData/Shaders/HLSL/BRDF.hlsl
2017-06-13 16:03:26 +01:00

165 lines
6.7 KiB
HLSL

#ifdef COMPILEPS
#ifdef PBR
// Following BRDF methods are based upon research Frostbite EA
//[Lagrade et al. 2014, "Moving Frostbite to Physically Based Rendering"]
//Schlick Fresnel
//specular = the rgb specular color value of the pixel
//VdotH = the dot product of the camera view direction and the half vector
float3 SchlickFresnel(float3 specular, float VdotH)
{
return specular + (float3(1.0, 1.0, 1.0) - specular) * pow(1.0 - VdotH, 5.0);
}
//Schlick Gaussian Fresnel
//specular = the rgb specular color value of the pixel
//VdotH = the dot product of the camera view direction and the half vector
float3 SchlickGaussianFresnel(in float3 specular, in float VdotH)
{
float sphericalGaussian = pow(2.0, (-5.55473 * VdotH - 6.98316) * VdotH);
return specular + (float3(1.0, 1.0, 1.0) - specular) * sphericalGaussian;
}
float3 SchlickFresnelCustom(float3 specular, float LdotH)
{
float ior = 0.25;
float airIor = 1.000277;
float f0 = (ior - airIor) / (ior + airIor);
const float max_ior = 2.5;
f0 = clamp(f0 * f0, 0.0, (max_ior - airIor) / (max_ior + airIor));
return specular * (f0 + (1 - f0) * pow(2, (-5.55473 * LdotH - 6.98316) * LdotH));
}
//Get Fresnel
//specular = the rgb specular color value of the pixel
//VdotH = the dot product of the camera view direction and the half vector
float3 Fresnel(float3 specular, float VdotH, float LdotH)
{
return SchlickFresnelCustom(specular, LdotH);
//return SchlickFresnel(specular, VdotH);
}
// Smith GGX corrected Visibility
// NdotL = the dot product of the normal and direction to the light
// NdotV = the dot product of the normal and the camera view direction
// roughness = the roughness of the pixel
float SmithGGXSchlickVisibility(float NdotL, float NdotV, float roughness)
{
float rough2 = roughness * roughness;
float lambdaV = NdotL * sqrt((-NdotV * rough2 + NdotV) * NdotV + rough2);
float lambdaL = NdotV * sqrt((-NdotL * rough2 + NdotL) * NdotL + rough2);
return 0.5 / (lambdaV + lambdaL);
}
float NeumannVisibility(float NdotV, float NdotL)
{
return NdotL * NdotV / max(1e-7, max(NdotL, NdotV));
}
// Get Visibility
// NdotL = the dot product of the normal and direction to the light
// NdotV = the dot product of the normal and the camera view direction
// roughness = the roughness of the pixel
float Visibility(float NdotL, float NdotV, float roughness)
{
return NeumannVisibility(NdotV, NdotL);
//return SmithGGXSchlickVisibility(NdotL, NdotV, roughness);
}
// GGX Distribution
// NdotH = the dot product of the normal and the half vector
// roughness = the roughness of the pixel
float GGXDistribution(float NdotH, float roughness)
{
float rough2 = roughness * roughness;
float tmp = (NdotH * rough2 - NdotH) * NdotH + 1;
return rough2 / (tmp * tmp);
}
// Blinn Distribution
// NdotH = the dot product of the normal and the half vector
// roughness = the roughness of the pixel
float BlinnPhongDistribution(in float NdotH, in float roughness)
{
const float specPower = max((2.0 / (roughness * roughness)) - 2.0, 1e-4f); // Calculate specular power from roughness
return pow(saturate(NdotH), specPower);
}
// Beckmann Distribution
// NdotH = the dot product of the normal and the half vector
// roughness = the roughness of the pixel
float BeckmannDistribution(in float NdotH, in float roughness)
{
const float rough2 = roughness * roughness;
const float roughnessA = 1.0 / (4.0 * rough2 * pow(NdotH, 4.0));
const float roughnessB = NdotH * NdotH - 1.0;
const float roughnessC = rough2 * NdotH * NdotH;
return roughnessA * exp(roughnessB / roughnessC);
}
// Get Distribution
// NdotH = the dot product of the normal and the half vector
// roughness = the roughness of the pixel
float Distribution(float NdotH, float roughness)
{
return GGXDistribution(NdotH, roughness);
}
// Lambertian Diffuse
// diffuseColor = the rgb color value of the pixel
// roughness = the roughness of the pixel
// NdotV = the normal dot with the camera view direction
// NdotL = the normal dot with the light direction
// VdotH = the camera view direction dot with the half vector
float3 LambertianDiffuse(float3 diffuseColor)
{
return diffuseColor * (1.0 / M_PI) ;
}
// Custom Lambertian Diffuse
// diffuseColor = the rgb color value of the pixel
// roughness = the roughness of the pixel
// NdotV = the normal dot with the camera view direction
// NdotL = the normal dot with the light direction
// VdotH = the camera view direction dot with the half vector
float3 CustomLambertianDiffuse(float3 diffuseColor, float NdotV, float roughness)
{
return diffuseColor * (1.0 / M_PI) * pow(NdotV, 0.5 + 0.3 * roughness);
}
// Burley Diffuse
// diffuseColor = the rgb color value of the pixel
// roughness = the roughness of the pixel
// NdotV = the normal dot with the camera view direction
// NdotL = the normal dot with the light direction
// VdotH = the camera view direction dot with the half vector
float3 BurleyDiffuse(float3 diffuseColor, float roughness, float NdotV, float NdotL, float VdotH)
{
const float energyBias = lerp(0, 0.5, roughness);
const float energyFactor = lerp(1.0, 1.0 / 1.51, roughness);
const float fd90 = energyBias + 2.0 * VdotH * VdotH * roughness;
const float f0 = 1.0;
const float lightScatter = f0 + (fd90 - f0) * pow(1.0f - NdotL, 5.0f);
const float viewScatter = f0 + (fd90 - f0) * pow(1.0f - NdotV, 5.0f);
return diffuseColor * lightScatter * viewScatter * energyFactor;
}
//Get Diffuse
// diffuseColor = the rgb color value of the pixel
// roughness = the roughness of the pixel
// NdotV = the normal dot with the camera view direction
// NdotL = the normal dot with the light direction
// VdotH = the camera view direction dot with the half vector
float3 Diffuse(float3 diffuseColor, float roughness, float NdotV, float NdotL, float VdotH)
{
//return LambertianDiffuse(diffuseColor);
return CustomLambertianDiffuse(diffuseColor, NdotV, roughness);
//return BurleyDiffuse(diffuseColor, roughness, NdotV, NdotL, VdotH);
}
#endif
#endif