162 lines
6.5 KiB
HLSL
162 lines
6.5 KiB
HLSL
#include "BRDF.hlsl"
|
|
#ifdef COMPILEPS
|
|
|
|
float3 GetSpecularDominantDir(float3 normal, float3 reflection, float roughness)
|
|
{
|
|
const float smoothness = 1.0 - roughness;
|
|
const float lerpFactor = smoothness * (sqrt(smoothness) + roughness);
|
|
return lerp(normal, reflection, lerpFactor);
|
|
}
|
|
|
|
float3 SphereLight(float3 worldPos, float3 lightVec, float3 normal, float3 toCamera, float roughness, float3 specColor, float3 diffColor, out float ndl)
|
|
{
|
|
float specEnergy = 1.0f;
|
|
|
|
float radius = cLightRad / 100;
|
|
float rough2 = max(roughness, 0.08);
|
|
rough2 *= rough2;
|
|
|
|
float radius2 = radius * radius;
|
|
float distToLightSqrd = dot(lightVec,lightVec);
|
|
float invDistToLight = rsqrt(distToLightSqrd);
|
|
float sinAlphaSqr = saturate(radius2 / distToLightSqrd);
|
|
float sinAlpha = sqrt(sinAlphaSqr);
|
|
|
|
ndl = dot(normal, (lightVec * invDistToLight));
|
|
|
|
if(ndl < sinAlpha)
|
|
{
|
|
ndl = max(ndl, -sinAlpha);
|
|
ndl = ((sinAlpha + ndl) * (sinAlpha + ndl)) / (4 * sinAlpha);
|
|
}
|
|
|
|
float sphereAngle = saturate(radius * invDistToLight);
|
|
|
|
specEnergy = rough2 / (rough2 + 0.5f * sphereAngle);
|
|
specEnergy *= specEnergy;
|
|
|
|
float3 R = 2 * dot(toCamera, normal) * normal - toCamera;
|
|
R = GetSpecularDominantDir(normal, R, roughness);
|
|
|
|
// Find closest point on sphere to ray
|
|
float3 closestPointOnRay = dot(lightVec, R) * R;
|
|
float3 centerToRay = closestPointOnRay - lightVec;
|
|
float invDistToRay = rsqrt(dot(centerToRay, centerToRay));
|
|
float3 closestPointOnSphere = lightVec + centerToRay * saturate(radius * invDistToRay);
|
|
|
|
lightVec = closestPointOnSphere;
|
|
float3 L = normalize(lightVec);
|
|
|
|
float3 h = normalize(toCamera + L);
|
|
float hdn = saturate(dot(h, normal));
|
|
float hdv = dot(h, toCamera);
|
|
float ndv = saturate(dot(normal, toCamera));
|
|
float hdl = saturate(dot(h, lightVec));
|
|
|
|
const float3 diffuseFactor = Diffuse(diffColor, roughness, ndv, ndl, hdv) * ndl;
|
|
const float3 fresnelTerm = Fresnel(specColor, hdv, hdl) ;
|
|
const float distTerm = Distribution(hdn, roughness);
|
|
const float visTerm = Visibility(ndl, ndv, roughness);
|
|
float3 specularFactor = distTerm * visTerm * fresnelTerm * ndl/ M_PI;
|
|
return diffuseFactor + specularFactor;
|
|
|
|
}
|
|
|
|
float3 TubeLight(float3 worldPos, float3 lightVec, float3 normal, float3 toCamera, float roughness, float3 specColor, float3 diffColor, out float ndl)
|
|
{
|
|
float radius = cLightRad / 100;
|
|
float len = cLightLength / 10;
|
|
float3 pos = (cLightPosPS.xyz - worldPos);
|
|
float3 reflectVec = reflect(-toCamera, normal);
|
|
|
|
float3 L01 = cLightDirPS * len;
|
|
float3 L0 = pos - 0.5 * L01;
|
|
float3 L1 = pos + 0.5 * L01;
|
|
float3 ld = L1 - L0;
|
|
|
|
float distL0 = length( L0 );
|
|
float distL1 = length( L1 );
|
|
|
|
float NoL0 = dot( L0, normal ) / ( 2.0 * distL0 );
|
|
float NoL1 = dot( L1, normal ) / ( 2.0 * distL1 );
|
|
ndl = ( 2.0 * clamp( NoL0 + NoL1, 0.0, 1.0 ) )
|
|
/ ( distL0 * distL1 + dot( L0, L1 ) + 2.0 );
|
|
|
|
float a = len * len;
|
|
float b = dot( reflectVec, L01 );
|
|
float t = saturate( dot( L0, b * reflectVec - L01 ) / (a - b*b) );
|
|
|
|
float3 closestPoint = L0 + ld * saturate( t);
|
|
float3 centreToRay = dot( closestPoint, reflectVec ) * reflectVec - closestPoint;
|
|
closestPoint = closestPoint + centreToRay * saturate(radius / length(centreToRay));
|
|
|
|
float3 l = normalize(closestPoint);
|
|
float3 h = normalize(toCamera + l);
|
|
|
|
ndl = saturate(dot(normal, lightVec));
|
|
float hdn = saturate(dot(h, normal));
|
|
float hdv = dot(h, toCamera);
|
|
float ndv = saturate(dot(normal, toCamera));
|
|
float hdl = saturate(dot(h, lightVec));
|
|
|
|
float distL = length(closestPoint);
|
|
float alpha = max(roughness, 0.08) * max(roughness, 0.08);
|
|
float alphaPrime = saturate(radius / (distL * 2.0) + alpha);
|
|
|
|
const float3 diffuseFactor = Diffuse(diffColor, roughness, ndv, ndl, hdv) * ndl;
|
|
const float3 fresnelTerm = Fresnel(specColor, hdv, hdl) ;
|
|
const float distTerm = Distribution(hdn, roughness);
|
|
const float visTerm = Visibility(ndl, ndv, roughness);
|
|
float3 specularFactor = distTerm * visTerm * fresnelTerm * ndl/ M_PI;
|
|
return diffuseFactor + specularFactor;
|
|
}
|
|
|
|
//Return the PBR BRDF value
|
|
// lightDir = the vector to the light
|
|
// lightVec = normalised lightDir
|
|
// toCamera = vector to the camera
|
|
// normal = surface normal of the pixel
|
|
// roughness = roughness of the pixel
|
|
// diffColor = the rgb color of the pixel
|
|
// specColor = the rgb specular color of the pixel
|
|
float3 GetBRDF(float3 worldPos, float3 lightDir, float3 lightVec, float3 toCamera, float3 normal, float roughness, float3 diffColor, float3 specColor)
|
|
{
|
|
|
|
const float3 Hn = normalize(toCamera + lightDir);
|
|
const float vdh = clamp((dot(toCamera, Hn)), M_EPSILON, 1.0);
|
|
const float ndh = clamp((dot(normal, Hn)), M_EPSILON, 1.0);
|
|
float ndl = clamp((dot(normal, lightVec)), M_EPSILON, 1.0);
|
|
const float ndv = clamp((dot(normal, toCamera)), M_EPSILON, 1.0);
|
|
const float ldh = clamp((dot(lightVec, Hn)), M_EPSILON, 1.0);
|
|
|
|
const float3 diffuseFactor = Diffuse(diffColor, roughness, ndv, ndl, vdh) * ndl;
|
|
float3 specularFactor = 0;
|
|
|
|
#ifdef SPECULAR
|
|
if(cLightRad > 0.0)
|
|
{
|
|
if(cLightLength > 0.0)
|
|
{
|
|
return TubeLight(worldPos, lightVec, normal, toCamera, roughness, specColor, diffColor, ndl);
|
|
|
|
}
|
|
else
|
|
{
|
|
return SphereLight(worldPos, lightVec, normal, toCamera, roughness, specColor, diffColor, ndl);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const float3 fresnelTerm = Fresnel(specColor, vdh, ldh) ;
|
|
const float distTerm = Distribution(ndh, roughness);
|
|
const float visTerm = Visibility(ndl, ndv, roughness);
|
|
specularFactor = distTerm * visTerm * fresnelTerm * ndl/ M_PI;
|
|
return diffuseFactor + specularFactor;
|
|
}
|
|
|
|
#endif
|
|
|
|
return diffuseFactor + specularFactor;
|
|
}
|
|
#endif
|