Urho3D/Source/ThirdParty/MojoShader/mojoshader.c

9546 lines
318 KiB
C

/**
* MojoShader; generate shader programs from bytecode of compiled
* Direct3D shaders.
*
* Please see the file LICENSE.txt in the source's root directory.
*
* This file written by Ryan C. Gordon.
*/
// !!! FIXME: this file really needs to be split up.
// !!! FIXME: I keep changing coding styles for symbols and typedefs.
// !!! FIXME: rules from MSDN about temp registers we probably don't check.
// - There are limited temporaries: vs_1_1 has 12 (ps_1_1 has _2_!).
// - SM2 apparently was variable, between 12 and 32. Shader Model 3 has 32.
// - A maximum of three temp registers can be used in a single instruction.
#define __MOJOSHADER_INTERNAL__ 1
#include "mojoshader_internal.h"
typedef struct ConstantsList
{
MOJOSHADER_constant constant;
struct ConstantsList *next;
} ConstantsList;
typedef struct VariableList
{
MOJOSHADER_uniformType type;
int index;
int count;
ConstantsList *constant;
int used;
int emit_position; // used in some profiles.
struct VariableList *next;
} VariableList;
typedef struct RegisterList
{
RegisterType regtype;
int regnum;
MOJOSHADER_usage usage;
unsigned int index;
int writemask;
int misc;
int written;
const VariableList *array;
struct RegisterList *next;
} RegisterList;
typedef struct
{
const uint32 *token; // this is the unmolested token in the stream.
int regnum;
int swizzle; // xyzw (all four, not split out).
int swizzle_x;
int swizzle_y;
int swizzle_z;
int swizzle_w;
SourceMod src_mod;
RegisterType regtype;
int relative;
RegisterType relative_regtype;
int relative_regnum;
int relative_component;
const VariableList *relative_array;
} SourceArgInfo;
struct Profile; // predeclare.
typedef struct CtabData
{
int have_ctab;
int symbol_count;
MOJOSHADER_symbol *symbols;
} CtabData;
// Context...this is state that changes as we parse through a shader...
typedef struct Context
{
int isfail;
int out_of_memory;
MOJOSHADER_malloc malloc;
MOJOSHADER_free free;
void *malloc_data;
int current_position;
const uint32 *orig_tokens;
const uint32 *tokens;
uint32 tokencount;
const MOJOSHADER_swizzle *swizzles;
unsigned int swizzles_count;
const MOJOSHADER_samplerMap *samplermap;
unsigned int samplermap_count;
Buffer *output;
Buffer *preflight;
Buffer *globals;
Buffer *helpers;
Buffer *subroutines;
Buffer *mainline_intro;
Buffer *mainline;
Buffer *ignore;
Buffer *output_stack[2];
int indent_stack[2];
int output_stack_len;
int indent;
const char *shader_type_str;
const char *endline;
int endline_len;
int profileid;
const struct Profile *profile;
MOJOSHADER_shaderType shader_type;
uint8 major_ver;
uint8 minor_ver;
DestArgInfo dest_arg;
SourceArgInfo source_args[5];
SourceArgInfo predicate_arg; // for predicated instructions.
uint32 dwords[4];
uint32 version_token;
int instruction_count;
uint32 instruction_controls;
uint32 previous_opcode;
int coissue;
int loops;
int reps;
int max_reps;
int cmps;
int scratch_registers;
int max_scratch_registers;
int branch_labels_stack_index;
int branch_labels_stack[32];
int assigned_branch_labels;
int assigned_vertex_attributes;
int last_address_reg_component;
RegisterList used_registers;
RegisterList defined_registers;
ErrorList *errors;
int constant_count;
ConstantsList *constants;
int uniform_count;
int uniform_float4_count;
int uniform_int4_count;
int uniform_bool_count;
RegisterList uniforms;
int attribute_count;
RegisterList attributes;
int sampler_count;
RegisterList samplers;
VariableList *variables; // variables to register mapping.
int centroid_allowed;
CtabData ctab;
int have_relative_input_registers;
int have_multi_color_outputs;
int determined_constants_arrays;
int predicated;
int uses_pointsize;
int uses_fog;
int glsl_generated_lit_helper;
int glsl_generated_texldd_setup;
int glsl_generated_texm3x3spec_helper;
int arb1_wrote_position;
int have_preshader;
int ignores_ctab;
int reset_texmpad;
int texm3x2pad_dst0;
int texm3x2pad_src0;
int texm3x3pad_dst0;
int texm3x3pad_src0;
int texm3x3pad_dst1;
int texm3x3pad_src1;
MOJOSHADER_preshader *preshader;
#if SUPPORT_PROFILE_ARB1_NV
int profile_supports_nv2;
int profile_supports_nv3;
int profile_supports_nv4;
#endif
#if SUPPORT_PROFILE_GLSL120
int profile_supports_glsl120;
#endif
} Context;
// Use these macros so we can remove all bits of these profiles from the build.
#if SUPPORT_PROFILE_ARB1_NV
#define support_nv2(ctx) ((ctx)->profile_supports_nv2)
#define support_nv3(ctx) ((ctx)->profile_supports_nv3)
#define support_nv4(ctx) ((ctx)->profile_supports_nv4)
#else
#define support_nv2(ctx) (0)
#define support_nv3(ctx) (0)
#define support_nv4(ctx) (0)
#endif
#if SUPPORT_PROFILE_GLSL120
#define support_glsl120(ctx) ((ctx)->profile_supports_glsl120)
#else
#define support_glsl120(ctx) (0)
#endif
// Profile entry points...
// one emit function for each opcode in each profile.
typedef void (*emit_function)(Context *ctx);
// one emit function for starting output in each profile.
typedef void (*emit_start)(Context *ctx, const char *profilestr);
// one emit function for ending output in each profile.
typedef void (*emit_end)(Context *ctx);
// one emit function for phase opcode output in each profile.
typedef void (*emit_phase)(Context *ctx);
// one emit function for finalizing output in each profile.
typedef void (*emit_finalize)(Context *ctx);
// one emit function for global definitions in each profile.
typedef void (*emit_global)(Context *ctx, RegisterType regtype, int regnum);
// one emit function for relative uniform arrays in each profile.
typedef void (*emit_array)(Context *ctx, VariableList *var);
// one emit function for relative constants arrays in each profile.
typedef void (*emit_const_array)(Context *ctx,
const struct ConstantsList *constslist,
int base, int size);
// one emit function for uniforms in each profile.
typedef void (*emit_uniform)(Context *ctx, RegisterType regtype, int regnum,
const VariableList *var);
// one emit function for samplers in each profile.
typedef void (*emit_sampler)(Context *ctx, int stage, TextureType ttype,
int texbem);
// one emit function for attributes in each profile.
typedef void (*emit_attribute)(Context *ctx, RegisterType regtype, int regnum,
MOJOSHADER_usage usage, int index, int wmask,
int flags);
// one args function for each possible sequence of opcode arguments.
typedef int (*args_function)(Context *ctx);
// one state function for each opcode where we have state machine updates.
typedef void (*state_function)(Context *ctx);
// one function for varnames in each profile.
typedef const char *(*varname_function)(Context *c, RegisterType t, int num);
// one function for const var array in each profile.
typedef const char *(*const_array_varname_function)(Context *c, int base, int size);
typedef struct Profile
{
const char *name;
emit_start start_emitter;
emit_end end_emitter;
emit_phase phase_emitter;
emit_global global_emitter;
emit_array array_emitter;
emit_const_array const_array_emitter;
emit_uniform uniform_emitter;
emit_sampler sampler_emitter;
emit_attribute attribute_emitter;
emit_finalize finalize_emitter;
varname_function get_varname;
const_array_varname_function get_const_array_varname;
} Profile;
// Convenience functions for allocators...
#if !MOJOSHADER_FORCE_ALLOCATOR
void *MOJOSHADER_internal_malloc(int bytes, void *d) { return malloc(bytes); }
void MOJOSHADER_internal_free(void *ptr, void *d) { free(ptr); }
#endif
MOJOSHADER_error MOJOSHADER_out_of_mem_error = {
"Out of memory", NULL, MOJOSHADER_POSITION_NONE
};
MOJOSHADER_parseData MOJOSHADER_out_of_mem_data = {
1, &MOJOSHADER_out_of_mem_error, 0, 0, 0, 0,
MOJOSHADER_TYPE_UNKNOWN, 0, 0, 0, 0
};
// !!! FIXME: cut and paste between every damned source file follows...
// !!! FIXME: We need to make some sort of ContextBase that applies to all
// !!! FIXME: files and move this stuff to mojoshader_common.c ...
static inline void out_of_memory(Context *ctx)
{
ctx->isfail = ctx->out_of_memory = 1;
} // out_of_memory
static inline void *Malloc(Context *ctx, const size_t len)
{
void *retval = ctx->malloc((int) len, ctx->malloc_data);
if (retval == NULL)
out_of_memory(ctx);
return retval;
} // Malloc
static inline char *StrDup(Context *ctx, const char *str)
{
char *retval = (char *) Malloc(ctx, strlen(str) + 1);
if (retval != NULL)
strcpy(retval, str);
return retval;
} // StrDup
static inline void Free(Context *ctx, void *ptr)
{
ctx->free(ptr, ctx->malloc_data);
} // Free
static void *MallocBridge(int bytes, void *data)
{
return Malloc((Context *) data, (size_t) bytes);
} // MallocBridge
static void FreeBridge(void *ptr, void *data)
{
Free((Context *) data, ptr);
} // FreeBridge
// jump between output sections in the context...
static int set_output(Context *ctx, Buffer **section)
{
// only create output sections on first use.
if (*section == NULL)
{
*section = buffer_create(256, MallocBridge, FreeBridge, ctx);
if (*section == NULL)
return 0;
} // if
ctx->output = *section;
return 1;
} // set_output
static void push_output(Context *ctx, Buffer **section)
{
assert(ctx->output_stack_len < (int) (STATICARRAYLEN(ctx->output_stack)));
ctx->output_stack[ctx->output_stack_len] = ctx->output;
ctx->indent_stack[ctx->output_stack_len] = ctx->indent;
ctx->output_stack_len++;
if (!set_output(ctx, section))
return;
ctx->indent = 0;
} // push_output
static inline void pop_output(Context *ctx)
{
assert(ctx->output_stack_len > 0);
ctx->output_stack_len--;
ctx->output = ctx->output_stack[ctx->output_stack_len];
ctx->indent = ctx->indent_stack[ctx->output_stack_len];
} // pop_output
// Shader model version magic...
static inline uint32 ver_ui32(const uint8 major, const uint8 minor)
{
return ( (((uint32) major) << 16) | (((minor) == 0xFF) ? 1 : (minor)) );
} // version_ui32
static inline int shader_version_supported(const uint8 maj, const uint8 min)
{
return (ver_ui32(maj,min) <= ver_ui32(MAX_SHADER_MAJOR, MAX_SHADER_MINOR));
} // shader_version_supported
static inline int shader_version_atleast(const Context *ctx, const uint8 maj,
const uint8 min)
{
return (ver_ui32(ctx->major_ver, ctx->minor_ver) >= ver_ui32(maj, min));
} // shader_version_atleast
static inline int shader_version_exactly(const Context *ctx, const uint8 maj,
const uint8 min)
{
return ((ctx->major_ver == maj) && (ctx->minor_ver == min));
} // shader_version_exactly
static inline int shader_is_pixel(const Context *ctx)
{
return (ctx->shader_type == MOJOSHADER_TYPE_PIXEL);
} // shader_is_pixel
static inline int shader_is_vertex(const Context *ctx)
{
return (ctx->shader_type == MOJOSHADER_TYPE_VERTEX);
} // shader_is_vertex
static inline int isfail(const Context *ctx)
{
return ctx->isfail;
} // isfail
static void failf(Context *ctx, const char *fmt, ...) ISPRINTF(2,3);
static void failf(Context *ctx, const char *fmt, ...)
{
ctx->isfail = 1;
if (ctx->out_of_memory)
return;
// no filename at this level (we pass a NULL to errorlist_add_va()...)
va_list ap;
va_start(ap, fmt);
errorlist_add_va(ctx->errors, NULL, ctx->current_position, fmt, ap);
va_end(ap);
} // failf
static inline void fail(Context *ctx, const char *reason)
{
failf(ctx, "%s", reason);
} // fail
static void output_line(Context *ctx, const char *fmt, ...) ISPRINTF(2,3);
static void output_line(Context *ctx, const char *fmt, ...)
{
assert(ctx->output != NULL);
if (isfail(ctx))
return; // we failed previously, don't go on...
const int indent = ctx->indent;
if (indent > 0)
{
char *indentbuf = (char *) alloca(indent);
memset(indentbuf, '\t', indent);
buffer_append(ctx->output, indentbuf, indent);
} // if
va_list ap;
va_start(ap, fmt);
buffer_append_va(ctx->output, fmt, ap);
va_end(ap);
buffer_append(ctx->output, ctx->endline, ctx->endline_len);
} // output_line
static inline void output_blank_line(Context *ctx)
{
assert(ctx->output != NULL);
if (!isfail(ctx))
buffer_append(ctx->output, ctx->endline, ctx->endline_len);
} // output_blank_line
// !!! FIXME: this is sort of nasty.
static void floatstr(Context *ctx, char *buf, size_t bufsize, float f,
int leavedecimal)
{
const size_t len = snprintf(buf, bufsize, "%f", f);
if ((len+2) >= bufsize)
fail(ctx, "BUG: internal buffer is too small");
else
{
char *end = buf + len;
char *ptr = strchr(buf, '.');
if (ptr == NULL)
{
if (leavedecimal)
strcat(buf, ".0");
return; // done.
} // if
while (--end != ptr)
{
if (*end != '0')
{
end++;
break;
} // if
} // while
if ((leavedecimal) && (end == ptr))
end += 2;
*end = '\0'; // chop extra '0' or all decimal places off.
} // else
} // floatstr
static inline TextureType cvtMojoToD3DSamplerType(const MOJOSHADER_samplerType type)
{
return (TextureType) (((int) type) + 2);
} // cvtMojoToD3DSamplerType
static inline MOJOSHADER_samplerType cvtD3DToMojoSamplerType(const TextureType type)
{
return (MOJOSHADER_samplerType) (((int) type) - 2);
} // cvtD3DToMojoSamplerType
// Deal with register lists... !!! FIXME: I sort of hate this.
static void free_reglist(MOJOSHADER_free f, void *d, RegisterList *item)
{
while (item != NULL)
{
RegisterList *next = item->next;
f(item, d);
item = next;
} // while
} // free_reglist
static inline uint32 reg_to_ui32(const RegisterType regtype, const int regnum)
{
return ( ((uint32) regtype) | (((uint32) regnum) << 16) );
} // reg_to_uint32
// !!! FIXME: ditch this for a hash table.
static RegisterList *reglist_insert(Context *ctx, RegisterList *prev,
const RegisterType regtype,
const int regnum)
{
const uint32 newval = reg_to_ui32(regtype, regnum);
RegisterList *item = prev->next;
while (item != NULL)
{
const uint32 val = reg_to_ui32(item->regtype, item->regnum);
if (newval == val)
return item; // already set, so we're done.
else if (newval < val) // insert it here.
break;
else // if (newval > val)
{
// keep going, we're not to the insertion point yet.
prev = item;
item = item->next;
} // else
} // while
// we need to insert an entry after (prev).
item = (RegisterList *) Malloc(ctx, sizeof (RegisterList));
if (item != NULL)
{
item->regtype = regtype;
item->regnum = regnum;
item->usage = MOJOSHADER_USAGE_UNKNOWN;
item->index = 0;
item->writemask = 0;
item->misc = 0;
item->array = NULL;
item->next = prev->next;
prev->next = item;
} // if
return item;
} // reglist_insert
static RegisterList *reglist_find(const RegisterList *prev,
const RegisterType rtype, const int regnum)
{
const uint32 newval = reg_to_ui32(rtype, regnum);
RegisterList *item = prev->next;
while (item != NULL)
{
const uint32 val = reg_to_ui32(item->regtype, item->regnum);
if (newval == val)
return item; // here it is.
else if (newval < val) // should have been here if it existed.
return NULL;
else // if (newval > val)
item = item->next;
} // while
return NULL; // wasn't in the list.
} // reglist_find
static inline const RegisterList *reglist_exists(RegisterList *prev,
const RegisterType regtype,
const int regnum)
{
return (reglist_find(prev, regtype, regnum));
} // reglist_exists
static inline int register_was_written(Context *ctx, const RegisterType rtype,
const int regnum)
{
RegisterList *reg = reglist_find(&ctx->used_registers, rtype, regnum);
return (reg && reg->written);
} // register_was_written
static inline RegisterList *set_used_register(Context *ctx,
const RegisterType regtype,
const int regnum,
const int written)
{
RegisterList *reg = NULL;
if ((regtype == REG_TYPE_COLOROUT) && (regnum > 0))
ctx->have_multi_color_outputs = 1;
reg = reglist_insert(ctx, &ctx->used_registers, regtype, regnum);
if (reg && written)
reg->written = 1;
return reg;
} // set_used_register
static inline int get_used_register(Context *ctx, const RegisterType regtype,
const int regnum)
{
return (reglist_exists(&ctx->used_registers, regtype, regnum) != NULL);
} // get_used_register
static inline void set_defined_register(Context *ctx, const RegisterType rtype,
const int regnum)
{
reglist_insert(ctx, &ctx->defined_registers, rtype, regnum);
} // set_defined_register
static inline int get_defined_register(Context *ctx, const RegisterType rtype,
const int regnum)
{
return (reglist_exists(&ctx->defined_registers, rtype, regnum) != NULL);
} // get_defined_register
static void add_attribute_register(Context *ctx, const RegisterType rtype,
const int regnum, const MOJOSHADER_usage usage,
const int index, const int writemask, int flags)
{
RegisterList *item = reglist_insert(ctx, &ctx->attributes, rtype, regnum);
item->usage = usage;
item->index = index;
item->writemask = writemask;
item->misc = flags;
if ((rtype == REG_TYPE_OUTPUT) && (usage == MOJOSHADER_USAGE_POINTSIZE))
ctx->uses_pointsize = 1; // note that we have to check this later.
else if ((rtype == REG_TYPE_OUTPUT) && (usage == MOJOSHADER_USAGE_FOG))
ctx->uses_fog = 1; // note that we have to check this later.
} // add_attribute_register
static inline void add_sampler(Context *ctx, const int regnum,
TextureType ttype, const int texbem)
{
const RegisterType rtype = REG_TYPE_SAMPLER;
// !!! FIXME: make sure it doesn't exist?
// !!! FIXME: (ps_1_1 assume we can add it multiple times...)
RegisterList *item = reglist_insert(ctx, &ctx->samplers, rtype, regnum);
if (ctx->samplermap != NULL)
{
unsigned int i;
for (i = 0; i < ctx->samplermap_count; i++)
{
if (ctx->samplermap[i].index == regnum)
{
ttype = cvtMojoToD3DSamplerType(ctx->samplermap[i].type);
break;
} // if
} // for
} // if
item->index = (int) ttype;
item->misc |= texbem;
} // add_sampler
static inline int writemask_xyzw(const int writemask)
{
return (writemask == 0xF); // 0xF == 1111. No explicit mask (full!).
} // writemask_xyzw
static inline int writemask_xyz(const int writemask)
{
return (writemask == 0x7); // 0x7 == 0111. (that is: xyz)
} // writemask_xyz
static inline int writemask_xy(const int writemask)
{
return (writemask == 0x3); // 0x3 == 0011. (that is: xy)
} // writemask_xy
static inline int writemask_x(const int writemask)
{
return (writemask == 0x1); // 0x1 == 0001. (that is: x)
} // writemask_x
static inline int writemask_y(const int writemask)
{
return (writemask == 0x2); // 0x1 == 0010. (that is: y)
} // writemask_y
static inline int replicate_swizzle(const int swizzle)
{
return ( (((swizzle >> 0) & 0x3) == ((swizzle >> 2) & 0x3)) &&
(((swizzle >> 2) & 0x3) == ((swizzle >> 4) & 0x3)) &&
(((swizzle >> 4) & 0x3) == ((swizzle >> 6) & 0x3)) );
} // replicate_swizzle
static inline int no_swizzle(const int swizzle)
{
return (swizzle == 0xE4); // 0xE4 == 11100100 ... 0 1 2 3. No swizzle.
} // no_swizzle
static inline int vecsize_from_writemask(const int m)
{
return (m & 1) + ((m >> 1) & 1) + ((m >> 2) & 1) + ((m >> 3) & 1);
} // vecsize_from_writemask
static inline void set_dstarg_writemask(DestArgInfo *dst, const int mask)
{
dst->writemask = mask;
dst->writemask0 = ((mask >> 0) & 1);
dst->writemask1 = ((mask >> 1) & 1);
dst->writemask2 = ((mask >> 2) & 1);
dst->writemask3 = ((mask >> 3) & 1);
} // set_dstarg_writemask
static int allocate_scratch_register(Context *ctx)
{
const int retval = ctx->scratch_registers++;
if (retval >= ctx->max_scratch_registers)
ctx->max_scratch_registers = retval + 1;
return retval;
} // allocate_scratch_register
static int allocate_branch_label(Context *ctx)
{
return ctx->assigned_branch_labels++;
} // allocate_branch_label
static inline void adjust_token_position(Context *ctx, const int incr)
{
ctx->tokens += incr;
ctx->tokencount -= incr;
ctx->current_position += incr * sizeof (uint32);
} // adjust_token_position
// D3D stuff that's used in more than just the d3d profile...
static int isscalar(Context *ctx, const MOJOSHADER_shaderType shader_type,
const RegisterType rtype, const int rnum)
{
const int uses_psize = ctx->uses_pointsize;
const int uses_fog = ctx->uses_fog;
if ( (rtype == REG_TYPE_OUTPUT) && ((uses_psize) || (uses_fog)) )
{
const RegisterList *reg = reglist_find(&ctx->attributes, rtype, rnum);
if (reg != NULL)
{
const MOJOSHADER_usage usage = reg->usage;
return ( (uses_psize && (usage == MOJOSHADER_USAGE_POINTSIZE)) ||
(uses_fog && (usage == MOJOSHADER_USAGE_FOG)) );
} // if
} // if
return scalar_register(shader_type, rtype, rnum);
} // isscalar
static const char swizzle_channels[] = { 'x', 'y', 'z', 'w' };
static const char *usagestrs[] = {
"_position", "_blendweight", "_blendindices", "_normal", "_psize",
"_texcoord", "_tangent", "_binormal", "_tessfactor", "_positiont",
"_color", "_fog", "_depth", "_sample"
};
static const char *get_D3D_register_string(Context *ctx,
RegisterType regtype,
int regnum, char *regnum_str,
size_t regnum_size)
{
const char *retval = NULL;
int has_number = 1;
switch (regtype)
{
case REG_TYPE_TEMP:
retval = "r";
break;
case REG_TYPE_INPUT:
retval = "v";
break;
case REG_TYPE_CONST:
retval = "c";
break;
case REG_TYPE_ADDRESS: // (or REG_TYPE_TEXTURE, same value.)
retval = shader_is_vertex(ctx) ? "a" : "t";
break;
case REG_TYPE_RASTOUT:
switch ((RastOutType) regnum)
{
case RASTOUT_TYPE_POSITION: retval = "oPos"; break;
case RASTOUT_TYPE_FOG: retval = "oFog"; break;
case RASTOUT_TYPE_POINT_SIZE: retval = "oPts"; break;
} // switch
has_number = 0;
break;
case REG_TYPE_ATTROUT:
retval = "oD";
break;
case REG_TYPE_OUTPUT: // (or REG_TYPE_TEXCRDOUT, same value.)
if (shader_is_vertex(ctx) && shader_version_atleast(ctx, 3, 0))
retval = "o";
else
retval = "oT";
break;
case REG_TYPE_CONSTINT:
retval = "i";
break;
case REG_TYPE_COLOROUT:
retval = "oC";
break;
case REG_TYPE_DEPTHOUT:
retval = "oDepth";
has_number = 0;
break;
case REG_TYPE_SAMPLER:
retval = "s";
break;
case REG_TYPE_CONSTBOOL:
retval = "b";
break;
case REG_TYPE_LOOP:
retval = "aL";
has_number = 0;
break;
case REG_TYPE_MISCTYPE:
switch ((const MiscTypeType) regnum)
{
case MISCTYPE_TYPE_POSITION: retval = "vPos"; break;
case MISCTYPE_TYPE_FACE: retval = "vFace"; break;
} // switch
has_number = 0;
break;
case REG_TYPE_LABEL:
retval = "l";
break;
case REG_TYPE_PREDICATE:
retval = "p";
break;
//case REG_TYPE_TEMPFLOAT16: // !!! FIXME: don't know this asm string
default:
fail(ctx, "unknown register type");
retval = "???";
has_number = 0;
break;
} // switch
if (has_number)
snprintf(regnum_str, regnum_size, "%u", (uint) regnum);
else
regnum_str[0] = '\0';
return retval;
} // get_D3D_register_string
// !!! FIXME: can we split the profile code out to separate source files?
#define AT_LEAST_ONE_PROFILE 0
#if !SUPPORT_PROFILE_D3D
#define PROFILE_EMITTER_D3D(op)
#else
#undef AT_LEAST_ONE_PROFILE
#define AT_LEAST_ONE_PROFILE 1
#define PROFILE_EMITTER_D3D(op) emit_D3D_##op,
static const char *make_D3D_srcarg_string_in_buf(Context *ctx,
const SourceArgInfo *arg,
char *buf, size_t buflen)
{
const char *premod_str = "";
const char *postmod_str = "";
switch (arg->src_mod)
{
case SRCMOD_NEGATE:
premod_str = "-";
break;
case SRCMOD_BIASNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_BIAS:
postmod_str = "_bias";
break;
case SRCMOD_SIGNNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_SIGN:
postmod_str = "_bx2";
break;
case SRCMOD_COMPLEMENT:
premod_str = "1-";
break;
case SRCMOD_X2NEGATE:
premod_str = "-";
// fall through.
case SRCMOD_X2:
postmod_str = "_x2";
break;
case SRCMOD_DZ:
postmod_str = "_dz";
break;
case SRCMOD_DW:
postmod_str = "_dw";
break;
case SRCMOD_ABSNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_ABS:
postmod_str = "_abs";
break;
case SRCMOD_NOT:
premod_str = "!";
break;
case SRCMOD_NONE:
case SRCMOD_TOTAL:
break; // stop compiler whining.
} // switch
char regnum_str[16];
const char *regtype_str = get_D3D_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
if (regtype_str == NULL)
{
fail(ctx, "Unknown source register type.");
*buf = '\0';
return buf;
} // if
const char *rel_lbracket = "";
const char *rel_rbracket = "";
char rel_swizzle[4] = { '\0' };
char rel_regnum_str[16] = { '\0' };
const char *rel_regtype_str = "";
if (arg->relative)
{
rel_swizzle[0] = '.';
rel_swizzle[1] = swizzle_channels[arg->relative_component];
rel_swizzle[2] = '\0';
rel_lbracket = "[";
rel_rbracket = "]";
rel_regtype_str = get_D3D_register_string(ctx, arg->relative_regtype,
arg->relative_regnum,
rel_regnum_str,
sizeof (rel_regnum_str));
if (regtype_str == NULL)
{
fail(ctx, "Unknown relative source register type.");
*buf = '\0';
return buf;
} // if
} // if
char swizzle_str[6];
size_t i = 0;
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !no_swizzle(arg->swizzle))
{
swizzle_str[i++] = '.';
swizzle_str[i++] = swizzle_channels[arg->swizzle_x];
swizzle_str[i++] = swizzle_channels[arg->swizzle_y];
swizzle_str[i++] = swizzle_channels[arg->swizzle_z];
swizzle_str[i++] = swizzle_channels[arg->swizzle_w];
// .xyzz is the same as .xyz, .z is the same as .zzzz, etc.
while (swizzle_str[i-1] == swizzle_str[i-2])
i--;
} // if
swizzle_str[i] = '\0';
assert(i < sizeof (swizzle_str));
// !!! FIXME: c12[a0.x] actually needs to be c[a0.x + 12]
snprintf(buf, buflen, "%s%s%s%s%s%s%s%s%s%s",
premod_str, regtype_str, regnum_str, postmod_str,
rel_lbracket, rel_regtype_str, rel_regnum_str, rel_swizzle,
rel_rbracket, swizzle_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_D3D_srcarg_string_in_buf
static const char *make_D3D_destarg_string(Context *ctx, char *buf,
const size_t buflen)
{
const DestArgInfo *arg = &ctx->dest_arg;
const char *result_shift_str = "";
switch (arg->result_shift)
{
case 0x1: result_shift_str = "_x2"; break;
case 0x2: result_shift_str = "_x4"; break;
case 0x3: result_shift_str = "_x8"; break;
case 0xD: result_shift_str = "_d8"; break;
case 0xE: result_shift_str = "_d4"; break;
case 0xF: result_shift_str = "_d2"; break;
} // switch
const char *sat_str = (arg->result_mod & MOD_SATURATE) ? "_sat" : "";
const char *pp_str = (arg->result_mod & MOD_PP) ? "_pp" : "";
const char *cent_str = (arg->result_mod & MOD_CENTROID) ? "_centroid" : "";
char regnum_str[16];
const char *regtype_str = get_D3D_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
if (regtype_str == NULL)
{
fail(ctx, "Unknown destination register type.");
*buf = '\0';
return buf;
} // if
char writemask_str[6];
size_t i = 0;
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !writemask_xyzw(arg->writemask))
{
writemask_str[i++] = '.';
if (arg->writemask0) writemask_str[i++] = 'x';
if (arg->writemask1) writemask_str[i++] = 'y';
if (arg->writemask2) writemask_str[i++] = 'z';
if (arg->writemask3) writemask_str[i++] = 'w';
} // if
writemask_str[i] = '\0';
assert(i < sizeof (writemask_str));
const char *pred_left = "";
const char *pred_right = "";
char pred[32] = { '\0' };
if (ctx->predicated)
{
pred_left = "(";
pred_right = ") ";
make_D3D_srcarg_string_in_buf(ctx, &ctx->predicate_arg,
pred, sizeof (pred));
} // if
// may turn out something like "_x2_sat_pp_centroid (!p0.x) r0.xyzw" ...
snprintf(buf, buflen, "%s%s%s%s %s%s%s%s%s%s",
result_shift_str, sat_str, pp_str, cent_str,
pred_left, pred, pred_right,
regtype_str, regnum_str, writemask_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_D3D_destarg_string
static const char *make_D3D_srcarg_string(Context *ctx, const size_t idx,
char *buf, size_t buflen)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return make_D3D_srcarg_string_in_buf(ctx, arg, buf, buflen);
} // make_D3D_srcarg_string
static const char *get_D3D_varname_in_buf(Context *ctx, RegisterType rt,
int regnum, char *buf,
const size_t len)
{
char regnum_str[16];
const char *regtype_str = get_D3D_register_string(ctx, rt, regnum,
regnum_str, sizeof (regnum_str));
snprintf(buf,len,"%s%s", regtype_str, regnum_str);
return buf;
} // get_D3D_varname_in_buf
static const char *get_D3D_varname(Context *ctx, RegisterType rt, int regnum)
{
char buf[64];
get_D3D_varname_in_buf(ctx, rt, regnum, buf, sizeof (buf));
return StrDup(ctx, buf);
} // get_D3D_varname
static const char *get_D3D_const_array_varname(Context *ctx, int base, int size)
{
char buf[64];
snprintf(buf, sizeof (buf), "c_array_%d_%d", base, size);
return StrDup(ctx, buf);
} // get_D3D_const_array_varname
static void emit_D3D_start(Context *ctx, const char *profilestr)
{
const uint major = (uint) ctx->major_ver;
const uint minor = (uint) ctx->minor_ver;
char minor_str[16];
ctx->ignores_ctab = 1;
if (minor == 0xFF)
strcpy(minor_str, "sw");
else if ((major > 1) && (minor == 1))
strcpy(minor_str, "x"); // for >= SM2, apparently this is "x". Weird.
else
snprintf(minor_str, sizeof (minor_str), "%u", (uint) minor);
output_line(ctx, "%s_%u_%s", ctx->shader_type_str, major, minor_str);
} // emit_D3D_start
static void emit_D3D_end(Context *ctx)
{
output_line(ctx, "end");
} // emit_D3D_end
static void emit_D3D_phase(Context *ctx)
{
output_line(ctx, "phase");
} // emit_D3D_phase
static void emit_D3D_finalize(Context *ctx)
{
// no-op.
} // emit_D3D_finalize
static void emit_D3D_global(Context *ctx, RegisterType regtype, int regnum)
{
// no-op.
} // emit_D3D_global
static void emit_D3D_array(Context *ctx, VariableList *var)
{
// no-op.
} // emit_D3D_array
static void emit_D3D_const_array(Context *ctx, const ConstantsList *clist,
int base, int size)
{
// no-op.
} // emit_D3D_const_array
static void emit_D3D_uniform(Context *ctx, RegisterType regtype, int regnum,
const VariableList *var)
{
// no-op.
} // emit_D3D_uniform
static void emit_D3D_sampler(Context *ctx, int s, TextureType ttype, int tb)
{
// no-op.
} // emit_D3D_sampler
static void emit_D3D_attribute(Context *ctx, RegisterType regtype, int regnum,
MOJOSHADER_usage usage, int index, int wmask,
int flags)
{
// no-op.
} // emit_D3D_attribute
static void emit_D3D_RESERVED(Context *ctx)
{
// do nothing; fails in the state machine.
} // emit_D3D_RESERVED
// Generic D3D opcode emitters. A list of macros generate all the entry points
// that call into these...
static char *lowercase(char *dst, const char *src)
{
int i = 0;
do
{
const char ch = src[i];
dst[i] = (((ch >= 'A') && (ch <= 'Z')) ? (ch - ('A' - 'a')) : ch);
} while (src[i++]);
return dst;
} // lowercase
static void emit_D3D_opcode_d(Context *ctx, const char *opcode)
{
char dst[64]; make_D3D_destarg_string(ctx, dst, sizeof (dst));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s%s", ctx->coissue ? "+" : "", opcode, dst);
} // emit_D3D_opcode_d
static void emit_D3D_opcode_s(Context *ctx, const char *opcode)
{
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s %s", ctx->coissue ? "+" : "", opcode, src0);
} // emit_D3D_opcode_s
static void emit_D3D_opcode_ss(Context *ctx, const char *opcode)
{
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_D3D_srcarg_string(ctx, 1, src1, sizeof (src1));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s %s, %s", ctx->coissue ? "+" : "", opcode, src0, src1);
} // emit_D3D_opcode_ss
static void emit_D3D_opcode_ds(Context *ctx, const char *opcode)
{
char dst[64]; make_D3D_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s%s, %s", ctx->coissue ? "+" : "", opcode, dst, src0);
} // emit_D3D_opcode_ds
static void emit_D3D_opcode_dss(Context *ctx, const char *opcode)
{
char dst[64]; make_D3D_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_D3D_srcarg_string(ctx, 1, src1, sizeof (src1));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s%s, %s, %s", ctx->coissue ? "+" : "",
opcode, dst, src0, src1);
} // emit_D3D_opcode_dss
static void emit_D3D_opcode_dsss(Context *ctx, const char *opcode)
{
char dst[64]; make_D3D_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_D3D_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_D3D_srcarg_string(ctx, 2, src2, sizeof (src2));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s%s, %s, %s, %s", ctx->coissue ? "+" : "",
opcode, dst, src0, src1, src2);
} // emit_D3D_opcode_dsss
static void emit_D3D_opcode_dssss(Context *ctx, const char *opcode)
{
char dst[64]; make_D3D_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_D3D_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_D3D_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_D3D_srcarg_string(ctx, 2, src2, sizeof (src2));
char src3[64]; make_D3D_srcarg_string(ctx, 3, src3, sizeof (src3));
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx,"%s%s%s, %s, %s, %s, %s", ctx->coissue ? "+" : "",
opcode, dst, src0, src1, src2, src3);
} // emit_D3D_opcode_dssss
static void emit_D3D_opcode(Context *ctx, const char *opcode)
{
opcode = lowercase((char *) alloca(strlen(opcode) + 1), opcode);
output_line(ctx, "%s%s", ctx->coissue ? "+" : "", opcode);
} // emit_D3D_opcode
#define EMIT_D3D_OPCODE_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode(ctx, #op); \
}
#define EMIT_D3D_OPCODE_D_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_d(ctx, #op); \
}
#define EMIT_D3D_OPCODE_S_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_s(ctx, #op); \
}
#define EMIT_D3D_OPCODE_SS_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_ss(ctx, #op); \
}
#define EMIT_D3D_OPCODE_DS_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_ds(ctx, #op); \
}
#define EMIT_D3D_OPCODE_DSS_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_dss(ctx, #op); \
}
#define EMIT_D3D_OPCODE_DSSS_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_dsss(ctx, #op); \
}
#define EMIT_D3D_OPCODE_DSSSS_FUNC(op) \
static void emit_D3D_##op(Context *ctx) { \
emit_D3D_opcode_dssss(ctx, #op); \
}
EMIT_D3D_OPCODE_FUNC(NOP)
EMIT_D3D_OPCODE_DS_FUNC(MOV)
EMIT_D3D_OPCODE_DSS_FUNC(ADD)
EMIT_D3D_OPCODE_DSS_FUNC(SUB)
EMIT_D3D_OPCODE_DSSS_FUNC(MAD)
EMIT_D3D_OPCODE_DSS_FUNC(MUL)
EMIT_D3D_OPCODE_DS_FUNC(RCP)
EMIT_D3D_OPCODE_DS_FUNC(RSQ)
EMIT_D3D_OPCODE_DSS_FUNC(DP3)
EMIT_D3D_OPCODE_DSS_FUNC(DP4)
EMIT_D3D_OPCODE_DSS_FUNC(MIN)
EMIT_D3D_OPCODE_DSS_FUNC(MAX)
EMIT_D3D_OPCODE_DSS_FUNC(SLT)
EMIT_D3D_OPCODE_DSS_FUNC(SGE)
EMIT_D3D_OPCODE_DS_FUNC(EXP)
EMIT_D3D_OPCODE_DS_FUNC(LOG)
EMIT_D3D_OPCODE_DS_FUNC(LIT)
EMIT_D3D_OPCODE_DSS_FUNC(DST)
EMIT_D3D_OPCODE_DSSS_FUNC(LRP)
EMIT_D3D_OPCODE_DS_FUNC(FRC)
EMIT_D3D_OPCODE_DSS_FUNC(M4X4)
EMIT_D3D_OPCODE_DSS_FUNC(M4X3)
EMIT_D3D_OPCODE_DSS_FUNC(M3X4)
EMIT_D3D_OPCODE_DSS_FUNC(M3X3)
EMIT_D3D_OPCODE_DSS_FUNC(M3X2)
EMIT_D3D_OPCODE_S_FUNC(CALL)
EMIT_D3D_OPCODE_SS_FUNC(CALLNZ)
EMIT_D3D_OPCODE_SS_FUNC(LOOP)
EMIT_D3D_OPCODE_FUNC(RET)
EMIT_D3D_OPCODE_FUNC(ENDLOOP)
EMIT_D3D_OPCODE_S_FUNC(LABEL)
EMIT_D3D_OPCODE_DSS_FUNC(POW)
EMIT_D3D_OPCODE_DSS_FUNC(CRS)
EMIT_D3D_OPCODE_DSSS_FUNC(SGN)
EMIT_D3D_OPCODE_DS_FUNC(ABS)
EMIT_D3D_OPCODE_DS_FUNC(NRM)
EMIT_D3D_OPCODE_S_FUNC(REP)
EMIT_D3D_OPCODE_FUNC(ENDREP)
EMIT_D3D_OPCODE_S_FUNC(IF)
EMIT_D3D_OPCODE_FUNC(ELSE)
EMIT_D3D_OPCODE_FUNC(ENDIF)
EMIT_D3D_OPCODE_FUNC(BREAK)
EMIT_D3D_OPCODE_DS_FUNC(MOVA)
EMIT_D3D_OPCODE_D_FUNC(TEXKILL)
EMIT_D3D_OPCODE_DS_FUNC(TEXBEM)
EMIT_D3D_OPCODE_DS_FUNC(TEXBEML)
EMIT_D3D_OPCODE_DS_FUNC(TEXREG2AR)
EMIT_D3D_OPCODE_DS_FUNC(TEXREG2GB)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2PAD)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2TEX)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3PAD)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3TEX)
EMIT_D3D_OPCODE_DSS_FUNC(TEXM3X3SPEC)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3VSPEC)
EMIT_D3D_OPCODE_DS_FUNC(EXPP)
EMIT_D3D_OPCODE_DS_FUNC(LOGP)
EMIT_D3D_OPCODE_DSSS_FUNC(CND)
EMIT_D3D_OPCODE_DS_FUNC(TEXREG2RGB)
EMIT_D3D_OPCODE_DS_FUNC(TEXDP3TEX)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X2DEPTH)
EMIT_D3D_OPCODE_DS_FUNC(TEXDP3)
EMIT_D3D_OPCODE_DS_FUNC(TEXM3X3)
EMIT_D3D_OPCODE_D_FUNC(TEXDEPTH)
EMIT_D3D_OPCODE_DSSS_FUNC(CMP)
EMIT_D3D_OPCODE_DSS_FUNC(BEM)
EMIT_D3D_OPCODE_DSSS_FUNC(DP2ADD)
EMIT_D3D_OPCODE_DS_FUNC(DSX)
EMIT_D3D_OPCODE_DS_FUNC(DSY)
EMIT_D3D_OPCODE_DSSSS_FUNC(TEXLDD)
EMIT_D3D_OPCODE_DSS_FUNC(TEXLDL)
EMIT_D3D_OPCODE_S_FUNC(BREAKP)
// special cases for comparison opcodes...
static const char *get_D3D_comparison_string(Context *ctx)
{
static const char *comps[] = {
"", "_gt", "_eq", "_ge", "_lt", "_ne", "_le"
};
if (ctx->instruction_controls >= STATICARRAYLEN(comps))
{
fail(ctx, "unknown comparison control");
return "";
} // if
return comps[ctx->instruction_controls];
} // get_D3D_comparison_string
static void emit_D3D_BREAKC(Context *ctx)
{
char op[16];
snprintf(op, sizeof (op), "break%s", get_D3D_comparison_string(ctx));
emit_D3D_opcode_ss(ctx, op);
} // emit_D3D_BREAKC
static void emit_D3D_IFC(Context *ctx)
{
char op[16];
snprintf(op, sizeof (op), "if%s", get_D3D_comparison_string(ctx));
emit_D3D_opcode_ss(ctx, op);
} // emit_D3D_IFC
static void emit_D3D_SETP(Context *ctx)
{
char op[16];
snprintf(op, sizeof (op), "setp%s", get_D3D_comparison_string(ctx));
emit_D3D_opcode_dss(ctx, op);
} // emit_D3D_SETP
static void emit_D3D_DEF(Context *ctx)
{
char dst[64];
make_D3D_destarg_string(ctx, dst, sizeof (dst));
const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int?
char val0[32];
char val1[32];
char val2[32];
char val3[32];
floatstr(ctx, val0, sizeof (val0), val[0], 0);
floatstr(ctx, val1, sizeof (val1), val[1], 0);
floatstr(ctx, val2, sizeof (val2), val[2], 0);
floatstr(ctx, val3, sizeof (val3), val[3], 0);
output_line(ctx, "def%s, %s, %s, %s, %s", dst, val0, val1, val2, val3);
} // emit_D3D_DEF
static void emit_D3D_DEFI(Context *ctx)
{
char dst[64];
make_D3D_destarg_string(ctx, dst, sizeof (dst));
const int32 *x = (const int32 *) ctx->dwords;
output_line(ctx, "defi%s, %d, %d, %d, %d", dst,
(int) x[0], (int) x[1], (int) x[2], (int) x[3]);
} // emit_D3D_DEFI
static void emit_D3D_DEFB(Context *ctx)
{
char dst[64];
make_D3D_destarg_string(ctx, dst, sizeof (dst));
output_line(ctx, "defb%s, %s", dst, ctx->dwords[0] ? "true" : "false");
} // emit_D3D_DEFB
static void emit_D3D_DCL(Context *ctx)
{
char dst[64];
make_D3D_destarg_string(ctx, dst, sizeof (dst));
const DestArgInfo *arg = &ctx->dest_arg;
const char *usage_str = "";
char index_str[16] = { '\0' };
if (arg->regtype == REG_TYPE_SAMPLER)
{
switch ((const TextureType) ctx->dwords[0])
{
case TEXTURE_TYPE_2D: usage_str = "_2d"; break;
case TEXTURE_TYPE_CUBE: usage_str = "_cube"; break;
case TEXTURE_TYPE_VOLUME: usage_str = "_volume"; break;
default: fail(ctx, "unknown sampler texture type"); return;
} // switch
} // if
else if (arg->regtype == REG_TYPE_MISCTYPE)
{
switch ((const MiscTypeType) arg->regnum)
{
case MISCTYPE_TYPE_POSITION:
case MISCTYPE_TYPE_FACE:
usage_str = ""; // just become "dcl vFace" or whatever.
break;
default: fail(ctx, "unknown misc register type"); return;
} // switch
} // else if
else
{
const uint32 usage = ctx->dwords[0];
const uint32 index = ctx->dwords[1];
usage_str = usagestrs[usage];
if (index != 0)
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
} // else
output_line(ctx, "dcl%s%s%s", usage_str, index_str, dst);
} // emit_D3D_DCL
static void emit_D3D_TEXCRD(Context *ctx)
{
// this opcode looks and acts differently depending on the shader model.
if (shader_version_atleast(ctx, 1, 4))
emit_D3D_opcode_ds(ctx, "texcrd");
else
emit_D3D_opcode_d(ctx, "texcoord");
} // emit_D3D_TEXCOORD
static void emit_D3D_TEXLD(Context *ctx)
{
// this opcode looks and acts differently depending on the shader model.
if (shader_version_atleast(ctx, 2, 0))
{
if (ctx->instruction_controls == CONTROL_TEXLD)
emit_D3D_opcode_dss(ctx, "texld");
else if (ctx->instruction_controls == CONTROL_TEXLDP)
emit_D3D_opcode_dss(ctx, "texldp");
else if (ctx->instruction_controls == CONTROL_TEXLDB)
emit_D3D_opcode_dss(ctx, "texldb");
} // if
else if (shader_version_atleast(ctx, 1, 4))
{
emit_D3D_opcode_ds(ctx, "texld");
} // else if
else
{
emit_D3D_opcode_d(ctx, "tex");
} // else
} // emit_D3D_TEXLD
static void emit_D3D_SINCOS(Context *ctx)
{
// this opcode needs extra registers for sm2 and lower.
if (!shader_version_atleast(ctx, 3, 0))
emit_D3D_opcode_dsss(ctx, "sincos");
else
emit_D3D_opcode_ds(ctx, "sincos");
} // emit_D3D_SINCOS
#undef EMIT_D3D_OPCODE_FUNC
#undef EMIT_D3D_OPCODE_D_FUNC
#undef EMIT_D3D_OPCODE_S_FUNC
#undef EMIT_D3D_OPCODE_SS_FUNC
#undef EMIT_D3D_OPCODE_DS_FUNC
#undef EMIT_D3D_OPCODE_DSS_FUNC
#undef EMIT_D3D_OPCODE_DSSS_FUNC
#undef EMIT_D3D_OPCODE_DSSSS_FUNC
#endif // SUPPORT_PROFILE_D3D
#if !SUPPORT_PROFILE_BYTECODE
#define PROFILE_EMITTER_BYTECODE(op)
#else
#undef AT_LEAST_ONE_PROFILE
#define AT_LEAST_ONE_PROFILE 1
#define PROFILE_EMITTER_BYTECODE(op) emit_BYTECODE_##op,
static void emit_BYTECODE_start(Context *ctx, const char *profilestr)
{
ctx->ignores_ctab = 1;
// just copy the whole token stream and make all other emitters no-ops.
if (set_output(ctx, &ctx->mainline))
{
const size_t len = ctx->tokencount * sizeof (uint32);
buffer_append(ctx->mainline, (const char *) ctx->tokens, len);
} // if
} // emit_BYTECODE_start
static void emit_BYTECODE_end(Context *ctx) {}
static void emit_BYTECODE_phase(Context *ctx) {}
static void emit_BYTECODE_finalize(Context *ctx) {}
static void emit_BYTECODE_global(Context *ctx, RegisterType t, int n) {}
static void emit_BYTECODE_array(Context *ctx, VariableList *var) {}
static void emit_BYTECODE_sampler(Context *c, int s, TextureType t, int tb) {}
static void emit_BYTECODE_const_array(Context *ctx, const ConstantsList *c,
int base, int size) {}
static void emit_BYTECODE_uniform(Context *ctx, RegisterType t, int n,
const VariableList *var) {}
static void emit_BYTECODE_attribute(Context *ctx, RegisterType t, int n,
MOJOSHADER_usage u, int i, int w,
int f) {}
static const char *get_BYTECODE_varname(Context *ctx, RegisterType rt, int regnum)
{
char regnum_str[16];
const char *regtype_str = get_D3D_register_string(ctx, rt, regnum,
regnum_str, sizeof (regnum_str));
char buf[64];
snprintf(buf, sizeof (buf), "%s%s", regtype_str, regnum_str);
return StrDup(ctx, buf);
} // get_BYTECODE_varname
static const char *get_BYTECODE_const_array_varname(Context *ctx, int base, int size)
{
char buf[64];
snprintf(buf, sizeof (buf), "c_array_%d_%d", base, size);
return StrDup(ctx, buf);
} // get_BYTECODE_const_array_varname
#define EMIT_BYTECODE_OPCODE_FUNC(op) \
static void emit_BYTECODE_##op(Context *ctx) {}
EMIT_BYTECODE_OPCODE_FUNC(RESERVED)
EMIT_BYTECODE_OPCODE_FUNC(NOP)
EMIT_BYTECODE_OPCODE_FUNC(MOV)
EMIT_BYTECODE_OPCODE_FUNC(ADD)
EMIT_BYTECODE_OPCODE_FUNC(SUB)
EMIT_BYTECODE_OPCODE_FUNC(MAD)
EMIT_BYTECODE_OPCODE_FUNC(MUL)
EMIT_BYTECODE_OPCODE_FUNC(RCP)
EMIT_BYTECODE_OPCODE_FUNC(RSQ)
EMIT_BYTECODE_OPCODE_FUNC(DP3)
EMIT_BYTECODE_OPCODE_FUNC(DP4)
EMIT_BYTECODE_OPCODE_FUNC(MIN)
EMIT_BYTECODE_OPCODE_FUNC(MAX)
EMIT_BYTECODE_OPCODE_FUNC(SLT)
EMIT_BYTECODE_OPCODE_FUNC(SGE)
EMIT_BYTECODE_OPCODE_FUNC(EXP)
EMIT_BYTECODE_OPCODE_FUNC(LOG)
EMIT_BYTECODE_OPCODE_FUNC(LIT)
EMIT_BYTECODE_OPCODE_FUNC(DST)
EMIT_BYTECODE_OPCODE_FUNC(LRP)
EMIT_BYTECODE_OPCODE_FUNC(FRC)
EMIT_BYTECODE_OPCODE_FUNC(M4X4)
EMIT_BYTECODE_OPCODE_FUNC(M4X3)
EMIT_BYTECODE_OPCODE_FUNC(M3X4)
EMIT_BYTECODE_OPCODE_FUNC(M3X3)
EMIT_BYTECODE_OPCODE_FUNC(M3X2)
EMIT_BYTECODE_OPCODE_FUNC(CALL)
EMIT_BYTECODE_OPCODE_FUNC(CALLNZ)
EMIT_BYTECODE_OPCODE_FUNC(LOOP)
EMIT_BYTECODE_OPCODE_FUNC(RET)
EMIT_BYTECODE_OPCODE_FUNC(ENDLOOP)
EMIT_BYTECODE_OPCODE_FUNC(LABEL)
EMIT_BYTECODE_OPCODE_FUNC(POW)
EMIT_BYTECODE_OPCODE_FUNC(CRS)
EMIT_BYTECODE_OPCODE_FUNC(SGN)
EMIT_BYTECODE_OPCODE_FUNC(ABS)
EMIT_BYTECODE_OPCODE_FUNC(NRM)
EMIT_BYTECODE_OPCODE_FUNC(SINCOS)
EMIT_BYTECODE_OPCODE_FUNC(REP)
EMIT_BYTECODE_OPCODE_FUNC(ENDREP)
EMIT_BYTECODE_OPCODE_FUNC(IF)
EMIT_BYTECODE_OPCODE_FUNC(ELSE)
EMIT_BYTECODE_OPCODE_FUNC(ENDIF)
EMIT_BYTECODE_OPCODE_FUNC(BREAK)
EMIT_BYTECODE_OPCODE_FUNC(MOVA)
EMIT_BYTECODE_OPCODE_FUNC(TEXKILL)
EMIT_BYTECODE_OPCODE_FUNC(TEXBEM)
EMIT_BYTECODE_OPCODE_FUNC(TEXBEML)
EMIT_BYTECODE_OPCODE_FUNC(TEXREG2AR)
EMIT_BYTECODE_OPCODE_FUNC(TEXREG2GB)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X2PAD)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X2TEX)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X3PAD)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X3TEX)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X3SPEC)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X3VSPEC)
EMIT_BYTECODE_OPCODE_FUNC(EXPP)
EMIT_BYTECODE_OPCODE_FUNC(LOGP)
EMIT_BYTECODE_OPCODE_FUNC(CND)
EMIT_BYTECODE_OPCODE_FUNC(TEXREG2RGB)
EMIT_BYTECODE_OPCODE_FUNC(TEXDP3TEX)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X2DEPTH)
EMIT_BYTECODE_OPCODE_FUNC(TEXDP3)
EMIT_BYTECODE_OPCODE_FUNC(TEXM3X3)
EMIT_BYTECODE_OPCODE_FUNC(TEXDEPTH)
EMIT_BYTECODE_OPCODE_FUNC(CMP)
EMIT_BYTECODE_OPCODE_FUNC(BEM)
EMIT_BYTECODE_OPCODE_FUNC(DP2ADD)
EMIT_BYTECODE_OPCODE_FUNC(DSX)
EMIT_BYTECODE_OPCODE_FUNC(DSY)
EMIT_BYTECODE_OPCODE_FUNC(TEXLDD)
EMIT_BYTECODE_OPCODE_FUNC(TEXLDL)
EMIT_BYTECODE_OPCODE_FUNC(BREAKP)
EMIT_BYTECODE_OPCODE_FUNC(BREAKC)
EMIT_BYTECODE_OPCODE_FUNC(IFC)
EMIT_BYTECODE_OPCODE_FUNC(SETP)
EMIT_BYTECODE_OPCODE_FUNC(DEF)
EMIT_BYTECODE_OPCODE_FUNC(DEFI)
EMIT_BYTECODE_OPCODE_FUNC(DEFB)
EMIT_BYTECODE_OPCODE_FUNC(DCL)
EMIT_BYTECODE_OPCODE_FUNC(TEXCRD)
EMIT_BYTECODE_OPCODE_FUNC(TEXLD)
#undef EMIT_BYTECODE_OPCODE_FUNC
#endif // SUPPORT_PROFILE_BYTECODE
#if !SUPPORT_PROFILE_GLSL
#define PROFILE_EMITTER_GLSL(op)
#else
#undef AT_LEAST_ONE_PROFILE
#define AT_LEAST_ONE_PROFILE 1
#define PROFILE_EMITTER_GLSL(op) emit_GLSL_##op,
#define EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(op) \
static void emit_GLSL_##op(Context *ctx) { \
fail(ctx, #op " unimplemented in glsl profile"); \
}
static inline const char *get_GLSL_register_string(Context *ctx,
const RegisterType regtype, const int regnum,
char *regnum_str, const size_t regnum_size)
{
// turns out these are identical at the moment.
return get_D3D_register_string(ctx,regtype,regnum,regnum_str,regnum_size);
} // get_GLSL_register_string
static const char *get_GLSL_uniform_type(Context *ctx, const RegisterType rtype)
{
switch (rtype)
{
case REG_TYPE_CONST: return "vec4";
case REG_TYPE_CONSTINT: return "ivec4";
case REG_TYPE_CONSTBOOL: return "bool";
default: fail(ctx, "BUG: used a uniform we don't know how to define.");
} // switch
return NULL;
} // get_GLSL_uniform_type
static const char *get_GLSL_varname_in_buf(Context *ctx, RegisterType rt,
int regnum, char *buf,
const size_t len)
{
char regnum_str[16];
const char *regtype_str = get_GLSL_register_string(ctx, rt, regnum,
regnum_str, sizeof (regnum_str));
snprintf(buf,len,"%s_%s%s", ctx->shader_type_str, regtype_str, regnum_str);
return buf;
} // get_GLSL_varname_in_buf
static const char *get_GLSL_varname(Context *ctx, RegisterType rt, int regnum)
{
char buf[64];
get_GLSL_varname_in_buf(ctx, rt, regnum, buf, sizeof (buf));
return StrDup(ctx, buf);
} // get_GLSL_varname
static inline const char *get_GLSL_const_array_varname_in_buf(Context *ctx,
const int base, const int size,
char *buf, const size_t buflen)
{
const char *type = ctx->shader_type_str;
snprintf(buf, buflen, "%s_const_array_%d_%d", type, base, size);
return buf;
} // get_GLSL_const_array_varname_in_buf
static const char *get_GLSL_const_array_varname(Context *ctx, int base, int size)
{
char buf[64];
get_GLSL_const_array_varname_in_buf(ctx, base, size, buf, sizeof (buf));
return StrDup(ctx, buf);
} // get_GLSL_const_array_varname
static inline const char *get_GLSL_input_array_varname(Context *ctx,
char *buf, const size_t buflen)
{
snprintf(buf, buflen, "%s", "vertex_input_array");
return buf;
} // get_GLSL_input_array_varname
static const char *get_GLSL_uniform_array_varname(Context *ctx,
const RegisterType regtype,
char *buf, const size_t len)
{
const char *shadertype = ctx->shader_type_str;
const char *type = get_GLSL_uniform_type(ctx, regtype);
snprintf(buf, len, "%s_uniforms_%s", shadertype, type);
return buf;
} // get_GLSL_uniform_array_varname
static const char *get_GLSL_destarg_varname(Context *ctx, char *buf, size_t len)
{
const DestArgInfo *arg = &ctx->dest_arg;
return get_GLSL_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, len);
} // get_GLSL_destarg_varname
static const char *get_GLSL_srcarg_varname(Context *ctx, const size_t idx,
char *buf, size_t len)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return get_GLSL_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, len);
} // get_GLSL_srcarg_varname
static const char *make_GLSL_destarg_assign(Context *, char *, const size_t,
const char *, ...) ISPRINTF(4,5);
static const char *make_GLSL_destarg_assign(Context *ctx, char *buf,
const size_t buflen,
const char *fmt, ...)
{
int need_parens = 0;
const DestArgInfo *arg = &ctx->dest_arg;
if (arg->writemask == 0)
{
*buf = '\0';
return buf; // no writemask? It's a no-op.
} // if
char clampbuf[32] = { '\0' };
const char *clampleft = "";
const char *clampright = "";
if (arg->result_mod & MOD_SATURATE)
{
const int vecsize = vecsize_from_writemask(arg->writemask);
clampleft = "clamp(";
if (vecsize == 1)
clampright = ", 0.0, 1.0)";
else
{
snprintf(clampbuf, sizeof (clampbuf),
", vec%d(0.0), vec%d(1.0))", vecsize, vecsize);
clampright = clampbuf;
} // else
} // if
// MSDN says MOD_PP is a hint and many implementations ignore it. So do we.
// CENTROID only allowed in DCL opcodes, which shouldn't come through here.
assert((arg->result_mod & MOD_CENTROID) == 0);
if (ctx->predicated)
{
fail(ctx, "predicated destinations unsupported"); // !!! FIXME
*buf = '\0';
return buf;
} // if
char operation[256];
va_list ap;
va_start(ap, fmt);
const int len = vsnprintf(operation, sizeof (operation), fmt, ap);
va_end(ap);
if (len >= sizeof (operation))
{
fail(ctx, "operation string too large"); // I'm lazy. :P
*buf = '\0';
return buf;
} // if
const char *result_shift_str = "";
switch (arg->result_shift)
{
case 0x1: result_shift_str = " * 2.0"; break;
case 0x2: result_shift_str = " * 4.0"; break;
case 0x3: result_shift_str = " * 8.0"; break;
case 0xD: result_shift_str = " / 8.0"; break;
case 0xE: result_shift_str = " / 4.0"; break;
case 0xF: result_shift_str = " / 2.0"; break;
} // switch
need_parens |= (result_shift_str[0] != '\0');
char regnum_str[16];
const char *regtype_str = get_GLSL_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
char writemask_str[6];
size_t i = 0;
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !writemask_xyzw(arg->writemask))
{
writemask_str[i++] = '.';
if (arg->writemask0) writemask_str[i++] = 'x';
if (arg->writemask1) writemask_str[i++] = 'y';
if (arg->writemask2) writemask_str[i++] = 'z';
if (arg->writemask3) writemask_str[i++] = 'w';
} // if
writemask_str[i] = '\0';
assert(i < sizeof (writemask_str));
const char *leftparen = (need_parens) ? "(" : "";
const char *rightparen = (need_parens) ? ")" : "";
snprintf(buf, buflen, "%s_%s%s%s = %s%s%s%s%s%s;",
ctx->shader_type_str, regtype_str, regnum_str, writemask_str,
clampleft, leftparen, operation, rightparen, result_shift_str,
clampright);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_GLSL_destarg_assign
static char *make_GLSL_swizzle_string(char *swiz_str, const size_t strsize,
const int swizzle, const int writemask)
{
size_t i = 0;
if ( (!no_swizzle(swizzle)) || (!writemask_xyzw(writemask)) )
{
const int writemask0 = (writemask >> 0) & 0x1;
const int writemask1 = (writemask >> 1) & 0x1;
const int writemask2 = (writemask >> 2) & 0x1;
const int writemask3 = (writemask >> 3) & 0x1;
const int swizzle_x = (swizzle >> 0) & 0x3;
const int swizzle_y = (swizzle >> 2) & 0x3;
const int swizzle_z = (swizzle >> 4) & 0x3;
const int swizzle_w = (swizzle >> 6) & 0x3;
swiz_str[i++] = '.';
if (writemask0) swiz_str[i++] = swizzle_channels[swizzle_x];
if (writemask1) swiz_str[i++] = swizzle_channels[swizzle_y];
if (writemask2) swiz_str[i++] = swizzle_channels[swizzle_z];
if (writemask3) swiz_str[i++] = swizzle_channels[swizzle_w];
} // if
assert(i < strsize);
swiz_str[i] = '\0';
return swiz_str;
} // make_GLSL_swizzle_string
static const char *make_GLSL_srcarg_string(Context *ctx, const size_t idx,
const int writemask, char *buf,
const size_t buflen)
{
*buf = '\0';
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
const char *premod_str = "";
const char *postmod_str = "";
switch (arg->src_mod)
{
case SRCMOD_NEGATE:
premod_str = "-";
break;
case SRCMOD_BIASNEGATE:
premod_str = "-(";
postmod_str = " - 0.5)";
break;
case SRCMOD_BIAS:
premod_str = "(";
postmod_str = " - 0.5)";
break;
case SRCMOD_SIGNNEGATE:
premod_str = "-((";
postmod_str = " - 0.5) * 2.0)";
break;
case SRCMOD_SIGN:
premod_str = "((";
postmod_str = " - 0.5) * 2.0)";
break;
case SRCMOD_COMPLEMENT:
premod_str = "(1.0 - ";
postmod_str = ")";
break;
case SRCMOD_X2NEGATE:
premod_str = "-(";
postmod_str = " * 2.0)";
break;
case SRCMOD_X2:
premod_str = "(";
postmod_str = " * 2.0)";
break;
case SRCMOD_DZ:
fail(ctx, "SRCMOD_DZ unsupported"); return buf; // !!! FIXME
postmod_str = "_dz";
break;
case SRCMOD_DW:
fail(ctx, "SRCMOD_DW unsupported"); return buf; // !!! FIXME
postmod_str = "_dw";
break;
case SRCMOD_ABSNEGATE:
premod_str = "-abs(";
postmod_str = ")";
break;
case SRCMOD_ABS:
premod_str = "abs(";
postmod_str = ")";
break;
case SRCMOD_NOT:
premod_str = "!";
break;
case SRCMOD_NONE:
case SRCMOD_TOTAL:
break; // stop compiler whining.
} // switch
const char *regtype_str = NULL;
if (!arg->relative)
{
regtype_str = get_GLSL_varname_in_buf(ctx, arg->regtype, arg->regnum,
(char *) alloca(64), 64);
} // if
const char *rel_lbracket = "";
char rel_offset[32] = { '\0' };
const char *rel_rbracket = "";
char rel_swizzle[4] = { '\0' };
const char *rel_regtype_str = "";
if (arg->relative)
{
if (arg->regtype == REG_TYPE_INPUT)
regtype_str=get_GLSL_input_array_varname(ctx,(char*)alloca(64),64);
else
{
assert(arg->regtype == REG_TYPE_CONST);
const int arrayidx = arg->relative_array->index;
const int offset = arg->regnum - arrayidx;
assert(offset >= 0);
if (arg->relative_array->constant)
{
const int arraysize = arg->relative_array->count;
regtype_str = get_GLSL_const_array_varname_in_buf(ctx,
arrayidx, arraysize, (char *) alloca(64), 64);
if (offset != 0)
snprintf(rel_offset, sizeof (rel_offset), "%d + ", offset);
} // if
else
{
regtype_str = get_GLSL_uniform_array_varname(ctx, arg->regtype,
(char *) alloca(64), 64);
if (offset == 0)
{
snprintf(rel_offset, sizeof (rel_offset),
"ARRAYBASE_%d + ", arrayidx);
} // if
else
{
snprintf(rel_offset, sizeof (rel_offset),
"(ARRAYBASE_%d + %d) + ", arrayidx, offset);
} // else
} // else
} // else
rel_lbracket = "[";
rel_regtype_str = get_GLSL_varname_in_buf(ctx, arg->relative_regtype,
arg->relative_regnum,
(char *) alloca(64), 64);
rel_swizzle[0] = '.';
rel_swizzle[1] = swizzle_channels[arg->relative_component];
rel_swizzle[2] = '\0';
rel_rbracket = "]";
} // if
char swiz_str[6] = { '\0' };
if (!isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum))
{
make_GLSL_swizzle_string(swiz_str, sizeof (swiz_str),
arg->swizzle, writemask);
} // if
if (regtype_str == NULL)
{
fail(ctx, "Unknown source register type.");
return buf;
} // if
snprintf(buf, buflen, "%s%s%s%s%s%s%s%s%s",
premod_str, regtype_str, rel_lbracket, rel_offset,
rel_regtype_str, rel_swizzle, rel_rbracket, swiz_str,
postmod_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_GLSL_srcarg_string
// generate some convenience functions.
#define MAKE_GLSL_SRCARG_STRING_(mask, bitmask) \
static inline const char *make_GLSL_srcarg_string_##mask(Context *ctx, \
const size_t idx, char *buf, \
const size_t buflen) { \
return make_GLSL_srcarg_string(ctx, idx, bitmask, buf, buflen); \
}
MAKE_GLSL_SRCARG_STRING_(x, (1 << 0))
MAKE_GLSL_SRCARG_STRING_(y, (1 << 1))
MAKE_GLSL_SRCARG_STRING_(z, (1 << 2))
MAKE_GLSL_SRCARG_STRING_(w, (1 << 3))
MAKE_GLSL_SRCARG_STRING_(scalar, (1 << 0))
MAKE_GLSL_SRCARG_STRING_(full, 0xF)
MAKE_GLSL_SRCARG_STRING_(masked, ctx->dest_arg.writemask)
MAKE_GLSL_SRCARG_STRING_(vec3, 0x7)
MAKE_GLSL_SRCARG_STRING_(vec2, 0x3)
#undef MAKE_GLSL_SRCARG_STRING_
// special cases for comparison opcodes...
static const char *get_GLSL_comparison_string_scalar(Context *ctx)
{
static const char *comps[] = { "", ">", "==", ">=", "<", "!=", "<=" };
if (ctx->instruction_controls >= STATICARRAYLEN(comps))
{
fail(ctx, "unknown comparison control");
return "";
} // if
return comps[ctx->instruction_controls];
} // get_GLSL_comparison_string_scalar
static const char *get_GLSL_comparison_string_vector(Context *ctx)
{
static const char *comps[] = {
"", "greaterThan", "equal", "greaterThanEqual", "lessThan",
"notEqual", "lessThanEqual"
};
if (ctx->instruction_controls >= STATICARRAYLEN(comps))
{
fail(ctx, "unknown comparison control");
return "";
} // if
return comps[ctx->instruction_controls];
} // get_GLSL_comparison_string_vector
static void emit_GLSL_start(Context *ctx, const char *profilestr)
{
if (!shader_is_vertex(ctx) && !shader_is_pixel(ctx))
{
failf(ctx, "Shader type %u unsupported in this profile.",
(uint) ctx->shader_type);
return;
} // if
else if (strcmp(profilestr, MOJOSHADER_PROFILE_GLSL) == 0)
{
// No gl_FragData[] before GLSL 1.10, so we have to force the version.
push_output(ctx, &ctx->preflight);
output_line(ctx, "#version 110");
pop_output(ctx);
} // else if
#if SUPPORT_PROFILE_GLSL120
else if (strcmp(profilestr, MOJOSHADER_PROFILE_GLSL120) == 0)
{
ctx->profile_supports_glsl120 = 1;
push_output(ctx, &ctx->preflight);
output_line(ctx, "#version 120");
pop_output(ctx);
} // else if
#endif
else
{
failf(ctx, "Profile '%s' unsupported or unknown.", profilestr);
return;
} // else
push_output(ctx, &ctx->mainline_intro);
output_line(ctx, "void main()");
output_line(ctx, "{");
pop_output(ctx);
set_output(ctx, &ctx->mainline);
ctx->indent++;
} // emit_GLSL_start
static void emit_GLSL_RET(Context *ctx);
static void emit_GLSL_end(Context *ctx)
{
// ps_1_* writes color to r0 instead oC0. We move it to the right place.
// We don't have to worry about a RET opcode messing this up, since
// RET isn't available before ps_2_0.
if (shader_is_pixel(ctx) && !shader_version_atleast(ctx, 2, 0))
{
const char *shstr = ctx->shader_type_str;
set_used_register(ctx, REG_TYPE_COLOROUT, 0, 1);
output_line(ctx, "%s_oC0 = %s_r0;", shstr, shstr);
} // if
// force a RET opcode if we're at the end of the stream without one.
if (ctx->previous_opcode != OPCODE_RET)
emit_GLSL_RET(ctx);
} // emit_GLSL_end
static void emit_GLSL_phase(Context *ctx)
{
// no-op in GLSL.
} // emit_GLSL_phase
static void output_GLSL_uniform_array(Context *ctx, const RegisterType regtype,
const int size)
{
if (size > 0)
{
char buf[64];
get_GLSL_uniform_array_varname(ctx, regtype, buf, sizeof (buf));
output_line(ctx, "uniform vec4 %s[%d];", buf, size);
} // if
} // output_GLSL_uniform_array
static void emit_GLSL_finalize(Context *ctx)
{
// throw some blank lines around to make source more readable.
push_output(ctx, &ctx->globals);
output_blank_line(ctx);
pop_output(ctx);
// If we had a relative addressing of REG_TYPE_INPUT, we need to build
// an array for it at the start of main(). GLSL doesn't let you specify
// arrays of attributes.
//vec4 blah_array[BIGGEST_ARRAY];
if (ctx->have_relative_input_registers) // !!! FIXME
fail(ctx, "Relative addressing of input registers not supported.");
push_output(ctx, &ctx->preflight);
output_GLSL_uniform_array(ctx, REG_TYPE_CONST, ctx->uniform_float4_count);
output_GLSL_uniform_array(ctx, REG_TYPE_CONSTINT, ctx->uniform_int4_count);
output_GLSL_uniform_array(ctx, REG_TYPE_CONSTBOOL, ctx->uniform_bool_count);
pop_output(ctx);
} // emit_GLSL_finalize
static void emit_GLSL_global(Context *ctx, RegisterType regtype, int regnum)
{
char varname[64];
get_GLSL_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
switch (regtype)
{
case REG_TYPE_ADDRESS:
if (shader_is_vertex(ctx))
output_line(ctx, "ivec4 %s;", varname);
else if (shader_is_pixel(ctx)) // actually REG_TYPE_TEXTURE.
{
// We have to map texture registers to temps for ps_1_1, since
// they work like temps, initialize with tex coords, and the
// ps_1_1 TEX opcode expects to overwrite it.
if (!shader_version_atleast(ctx, 1, 4))
{
output_line(ctx, "vec4 %s = gl_TexCoord[%d];",
varname, regnum);
} // if
} // else if
break;
case REG_TYPE_PREDICATE:
output_line(ctx, "bvec4 %s;", varname);
break;
case REG_TYPE_TEMP:
output_line(ctx, "vec4 %s;", varname);
break;
case REG_TYPE_LOOP:
break; // no-op. We declare these in for loops at the moment.
case REG_TYPE_LABEL:
break; // no-op. If we see it here, it means we optimized it out.
default:
fail(ctx, "BUG: we used a register we don't know how to define.");
break;
} // switch
pop_output(ctx);
} // emit_GLSL_global
static void emit_GLSL_array(Context *ctx, VariableList *var)
{
// All uniforms (except constant arrays, which only get pushed once at
// compile time) are now packed into a single array, so we can batch
// the uniform transfers. So this is doesn't actually define an array
// here; the one, big array is emitted during finalization instead.
// However, we need to #define the offset into the one, big array here,
// and let dereferences use that #define.
const int base = var->index;
const int glslbase = ctx->uniform_float4_count;
push_output(ctx, &ctx->globals);
output_line(ctx, "#define ARRAYBASE_%d %d", base, glslbase);
pop_output(ctx);
var->emit_position = glslbase;
} // emit_GLSL_array
static void emit_GLSL_const_array(Context *ctx, const ConstantsList *clist,
int base, int size)
{
char varname[64];
get_GLSL_const_array_varname_in_buf(ctx,base,size,varname,sizeof(varname));
#if 0
// !!! FIXME: fails on Nvidia's and Apple's GL, even with #version 120.
// !!! FIXME: (the 1.20 spec says it should work, though, I think...)
if (support_glsl120(ctx))
{
// GLSL 1.20 can do constant arrays.
const char *cstr = NULL;
push_output(ctx, &ctx->globals);
output_line(ctx, "const vec4 %s[%d] = vec4[%d](", varname, size, size);
ctx->indent++;
int i;
for (i = 0; i < size; i++)
{
while (clist->constant.type != MOJOSHADER_UNIFORM_FLOAT)
clist = clist->next;
assert(clist->constant.index == (base + i));
char val0[32];
char val1[32];
char val2[32];
char val3[32];
floatstr(ctx, val0, sizeof (val0), clist->constant.value.f[0], 1);
floatstr(ctx, val1, sizeof (val1), clist->constant.value.f[1], 1);
floatstr(ctx, val2, sizeof (val2), clist->constant.value.f[2], 1);
floatstr(ctx, val3, sizeof (val3), clist->constant.value.f[3], 1);
output_line(ctx, "vec4(%s, %s, %s, %s)%s", val0, val1, val2, val3,
(i < (size-1)) ? "," : "");
clist = clist->next;
} // for
ctx->indent--;
output_line(ctx, ");");
pop_output(ctx);
} // if
else
#endif
{
// stock GLSL 1.0 can't do constant arrays, so make a uniform array
// and have the OpenGL glue assign it at link time. Lame!
push_output(ctx, &ctx->globals);
output_line(ctx, "uniform vec4 %s[%d];", varname, size);
pop_output(ctx);
} // else
} // emit_GLSL_const_array
static void emit_GLSL_uniform(Context *ctx, RegisterType regtype, int regnum,
const VariableList *var)
{
// Now that we're pushing all the uniforms as one big array, pack these
// down, so if we only use register c439, it'll actually map to
// glsl_uniforms_vec4[0]. As we push one big array, this will prevent
// uploading unused data.
char varname[64];
char name[64];
int index = 0;
get_GLSL_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
if (var == NULL)
{
get_GLSL_uniform_array_varname(ctx, regtype, name, sizeof (name));
if (regtype == REG_TYPE_CONST)
index = ctx->uniform_float4_count;
else if (regtype == REG_TYPE_CONSTINT)
index = ctx->uniform_int4_count;
else if (regtype == REG_TYPE_CONSTBOOL)
index = ctx->uniform_bool_count;
else // get_GLSL_uniform_array_varname() would have called fail().
assert(isfail(ctx));
output_line(ctx, "#define %s %s[%d]", varname, name, index);
} // if
else
{
const int arraybase = var->index;
if (var->constant)
{
get_GLSL_const_array_varname_in_buf(ctx, arraybase, var->count,
name, sizeof (name));
index = (regnum - arraybase);
} // if
else
{
assert(var->emit_position != -1);
get_GLSL_uniform_array_varname(ctx, regtype, name, sizeof (name));
index = (regnum - arraybase) + var->emit_position;
} // else
output_line(ctx, "#define %s %s[%d]", varname, name, index);
} // else
pop_output(ctx);
} // emit_GLSL_uniform
static void emit_GLSL_sampler(Context *ctx,int stage,TextureType ttype,int tb)
{
const char *type = "";
switch (ttype)
{
case TEXTURE_TYPE_2D: type = "sampler2D"; break;
case TEXTURE_TYPE_CUBE: type = "samplerCube"; break;
case TEXTURE_TYPE_VOLUME: type = "sampler3D"; break;
default: fail(ctx, "BUG: used a sampler we don't know how to define.");
} // switch
char var[64];
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, stage, var, sizeof (var));
push_output(ctx, &ctx->globals);
output_line(ctx, "uniform %s %s;", type, var);
if (tb) // This sampler used a ps_1_1 TEXBEM opcode?
{
char name[64];
const int index = ctx->uniform_float4_count;
ctx->uniform_float4_count += 2;
get_GLSL_uniform_array_varname(ctx, REG_TYPE_CONST, name, sizeof (name));
output_line(ctx, "#define %s_texbem %s[%d]", var, name, index);
output_line(ctx, "#define %s_texbeml %s[%d]", var, name, index+1);
} // if
pop_output(ctx);
} // emit_GLSL_sampler
static void emit_GLSL_attribute(Context *ctx, RegisterType regtype, int regnum,
MOJOSHADER_usage usage, int index, int wmask,
int flags)
{
// !!! FIXME: this function doesn't deal with write masks at all yet!
const char *usage_str = NULL;
const char *arrayleft = "";
const char *arrayright = "";
char index_str[16] = { '\0' };
char var[64];
get_GLSL_varname_in_buf(ctx, regtype, regnum, var, sizeof (var));
//assert((flags & MOD_PP) == 0); // !!! FIXME: is PP allowed?
if (index != 0) // !!! FIXME: a lot of these MUST be zero.
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
if (shader_is_vertex(ctx))
{
// pre-vs3 output registers.
// these don't ever happen in DCL opcodes, I think. Map to vs_3_*
// output registers.
if (!shader_version_atleast(ctx, 3, 0))
{
if (regtype == REG_TYPE_RASTOUT)
{
regtype = REG_TYPE_OUTPUT;
index = regnum;
switch ((const RastOutType) regnum)
{
case RASTOUT_TYPE_POSITION:
usage = MOJOSHADER_USAGE_POSITION;
break;
case RASTOUT_TYPE_FOG:
usage = MOJOSHADER_USAGE_FOG;
break;
case RASTOUT_TYPE_POINT_SIZE:
usage = MOJOSHADER_USAGE_POINTSIZE;
break;
} // switch
} // if
else if (regtype == REG_TYPE_ATTROUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_COLOR;
index = regnum;
} // else if
else if (regtype == REG_TYPE_TEXCRDOUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_TEXCOORD;
index = regnum;
} // else if
} // if
// to avoid limitations of various GL entry points for input
// attributes (glSecondaryColorPointer() can only take 3 component
// items, glVertexPointer() can't do GL_UNSIGNED_BYTE, many other
// issues), we set up all inputs as generic vertex attributes, so we
// can pass data in just about any form, and ignore the built-in GLSL
// attributes like gl_SecondaryColor. Output needs to use the the
// built-ins, though, but we don't have to worry about the GL entry
// point limitations there.
if (regtype == REG_TYPE_INPUT)
{
push_output(ctx, &ctx->globals);
output_line(ctx, "attribute vec4 %s;", var);
pop_output(ctx);
} // if
else if (regtype == REG_TYPE_OUTPUT)
{
switch (usage)
{
case MOJOSHADER_USAGE_POSITION:
usage_str = "gl_Position";
break;
case MOJOSHADER_USAGE_POINTSIZE:
usage_str = "gl_PointSize";
break;
case MOJOSHADER_USAGE_COLOR:
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "gl_FrontColor";
else if (index == 1)
usage_str = "gl_FrontSecondaryColor";
break;
case MOJOSHADER_USAGE_FOG:
usage_str = "gl_FogFragCoord";
break;
case MOJOSHADER_USAGE_TEXCOORD:
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "gl_TexCoord";
arrayleft = "[";
arrayright = "]";
break;
default:
// !!! FIXME: we need to deal with some more built-in varyings here.
break;
} // switch
// !!! FIXME: the #define is a little hacky, but it means we don't
// !!! FIXME: have to track these separately if this works.
push_output(ctx, &ctx->globals);
// no mapping to built-in var? Just make it a regular global, pray.
if (usage_str == NULL)
output_line(ctx, "vec4 %s;", var);
else
{
output_line(ctx, "#define %s %s%s%s%s", var, usage_str,
arrayleft, index_str, arrayright);
} // else
pop_output(ctx);
} // else if
else
{
fail(ctx, "unknown vertex shader attribute register");
} // else
} // if
else if (shader_is_pixel(ctx))
{
// samplers DCLs get handled in emit_GLSL_sampler().
if (flags & MOD_CENTROID) // !!! FIXME
{
failf(ctx, "centroid unsupported in %s profile", ctx->profile->name);
return;
} // if
if (regtype == REG_TYPE_COLOROUT)
{
if (!ctx->have_multi_color_outputs)
usage_str = "gl_FragColor"; // maybe faster?
else
{
snprintf(index_str, sizeof (index_str), "%u", (uint) regnum);
usage_str = "gl_FragData";
arrayleft = "[";
arrayright = "]";
} // else
} // if
else if (regtype == REG_TYPE_DEPTHOUT)
usage_str = "gl_FragDepth";
// !!! FIXME: can you actualy have a texture register with COLOR usage?
else if ((regtype == REG_TYPE_TEXTURE) || (regtype == REG_TYPE_INPUT))
{
if (usage == MOJOSHADER_USAGE_TEXCOORD)
{
// ps_1_1 does a different hack for this attribute.
// Refer to emit_GLSL_global()'s REG_TYPE_TEXTURE code.
if (shader_version_atleast(ctx, 1, 4))
{
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "gl_TexCoord";
arrayleft = "[";
arrayright = "]";
} // if
} // if
else if (usage == MOJOSHADER_USAGE_COLOR)
{
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "gl_Color";
else if (index == 1)
usage_str = "gl_SecondaryColor";
else
fail(ctx, "unsupported color index");
} // else if
} // else if
else if (regtype == REG_TYPE_MISCTYPE)
{
const MiscTypeType mt = (MiscTypeType) regnum;
if (mt == MISCTYPE_TYPE_FACE)
{
push_output(ctx, &ctx->globals);
output_line(ctx, "float %s = gl_FrontFacing ? 1.0 : -1.0;", var);
pop_output(ctx);
} // if
else if (mt == MISCTYPE_TYPE_POSITION)
{
index_str[0] = '\0'; // no explicit number.
usage_str = "gl_FragCoord"; // !!! FIXME: is this the same coord space as D3D?
} // else if
else
{
fail(ctx, "BUG: unhandled misc register");
} // else
} // else if
else
{
fail(ctx, "unknown pixel shader attribute register");
} // else
if (usage_str != NULL)
{
push_output(ctx, &ctx->globals);
output_line(ctx, "#define %s %s%s%s%s", var, usage_str,
arrayleft, index_str, arrayright);
pop_output(ctx);
} // if
} // else if
else
{
fail(ctx, "Unknown shader type"); // state machine should catch this.
} // else
} // emit_GLSL_attribute
static void emit_GLSL_NOP(Context *ctx)
{
// no-op is a no-op. :)
} // emit_GLSL_NOP
static void emit_GLSL_MOV(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "%s", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_MOV
static void emit_GLSL_ADD(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "%s + %s", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_ADD
static void emit_GLSL_SUB(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "%s - %s", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_SUB
static void emit_GLSL_MAD(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char src2[64]; make_GLSL_srcarg_string_masked(ctx, 2, src2, sizeof (src2));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "(%s * %s) + %s", src0, src1, src2);
output_line(ctx, "%s", code);
} // emit_GLSL_MAD
static void emit_GLSL_MUL(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "%s * %s", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_MUL
static void emit_GLSL_RCP(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "1.0 / %s", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_RCP
static void emit_GLSL_RSQ(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "inversesqrt(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_RSQ
static void emit_GLSL_dotprod(Context *ctx, const char *src0, const char *src1,
const char *extra)
{
const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask);
char castleft[16] = { '\0' };
const char *castright = "";
if (vecsize != 1)
{
snprintf(castleft, sizeof (castleft), "vec%d(", vecsize);
castright = ")";
} // if
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "%sdot(%s, %s)%s%s",
castleft, src0, src1, extra, castright);
output_line(ctx, "%s", code);
} // emit_GLSL_dotprod
static void emit_GLSL_DP3(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_vec3(ctx, 1, src1, sizeof (src1));
emit_GLSL_dotprod(ctx, src0, src1, "");
} // emit_GLSL_DP3
static void emit_GLSL_DP4(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_full(ctx, 1, src1, sizeof (src1));
emit_GLSL_dotprod(ctx, src0, src1, "");
} // emit_GLSL_DP4
static void emit_GLSL_MIN(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "min(%s, %s)", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_MIN
static void emit_GLSL_MAX(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "max(%s, %s)", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_MAX
static void emit_GLSL_SLT(Context *ctx)
{
const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask);
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
// float(bool) or vec(bvec) results in 0.0 or 1.0, like SLT wants.
if (vecsize == 1)
make_GLSL_destarg_assign(ctx, code, sizeof (code), "float(%s < %s)", src0, src1);
else
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec%d(lessThan(%s, %s))",
vecsize, src0, src1);
} // else
output_line(ctx, "%s", code);
} // emit_GLSL_SLT
static void emit_GLSL_SGE(Context *ctx)
{
const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask);
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
// float(bool) or vec(bvec) results in 0.0 or 1.0, like SGE wants.
if (vecsize == 1)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"float(%s >= %s)", src0, src1);
} // if
else
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec%d(greaterThanEqual(%s, %s))",
vecsize, src0, src1);
} // else
output_line(ctx, "%s", code);
} // emit_GLSL_SGE
static void emit_GLSL_EXP(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "exp2(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_EXP
static void emit_GLSL_LOG(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "log2(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_LOG
static void emit_GLSL_LIT_helper(Context *ctx)
{
const char *maxp = "127.9961"; // value from the dx9 reference.
if (ctx->glsl_generated_lit_helper)
return;
ctx->glsl_generated_lit_helper = 1;
push_output(ctx, &ctx->helpers);
output_line(ctx, "vec4 LIT(const vec4 src)");
output_line(ctx, "{"); ctx->indent++;
output_line(ctx, "float power = clamp(src.w, -%s, %s);",maxp,maxp);
output_line(ctx, "vec4 retval = vec4(1.0, 0.0, 0.0, 1.0);");
output_line(ctx, "if (src.x > 0.0) {"); ctx->indent++;
output_line(ctx, "retval.y = src.x;");
output_line(ctx, "if (src.y > 0.0) {"); ctx->indent++;
output_line(ctx, "retval.z = pow(src.y, power);"); ctx->indent--;
output_line(ctx, "}"); ctx->indent--;
output_line(ctx, "}");
output_line(ctx, "return retval;"); ctx->indent--;
output_line(ctx, "}");
output_blank_line(ctx);
pop_output(ctx);
} // emit_GLSL_LIT_helper
static void emit_GLSL_LIT(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
char code[128];
emit_GLSL_LIT_helper(ctx);
make_GLSL_destarg_assign(ctx, code, sizeof (code), "LIT(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_LIT
static void emit_GLSL_DST(Context *ctx)
{
// !!! FIXME: needs to take ctx->dst_arg.writemask into account.
char src0_y[64]; make_GLSL_srcarg_string_y(ctx, 0, src0_y, sizeof (src0_y));
char src1_y[64]; make_GLSL_srcarg_string_y(ctx, 1, src1_y, sizeof (src1_y));
char src0_z[64]; make_GLSL_srcarg_string_z(ctx, 0, src0_z, sizeof (src0_z));
char src1_w[64]; make_GLSL_srcarg_string_w(ctx, 1, src1_w, sizeof (src1_w));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec4(1.0, %s * %s, %s, %s)",
src0_y, src1_y, src0_z, src1_w);
output_line(ctx, "%s", code);
} // emit_GLSL_DST
static void emit_GLSL_LRP(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char src2[64]; make_GLSL_srcarg_string_masked(ctx, 2, src2, sizeof (src2));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "mix(%s, %s, %s)",
src2, src1, src0);
output_line(ctx, "%s", code);
} // emit_GLSL_LRP
static void emit_GLSL_FRC(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "fract(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_FRC
static void emit_GLSL_M4X4(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
char row0[64]; make_GLSL_srcarg_string_full(ctx, 1, row0, sizeof (row0));
char row1[64]; make_GLSL_srcarg_string_full(ctx, 2, row1, sizeof (row1));
char row2[64]; make_GLSL_srcarg_string_full(ctx, 3, row2, sizeof (row2));
char row3[64]; make_GLSL_srcarg_string_full(ctx, 4, row3, sizeof (row3));
char code[256];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec4(dot(%s, %s), dot(%s, %s), dot(%s, %s), dot(%s, %s))",
src0, row0, src0, row1, src0, row2, src0, row3);
output_line(ctx, "%s", code);
} // emit_GLSL_M4X4
static void emit_GLSL_M4X3(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
char row0[64]; make_GLSL_srcarg_string_full(ctx, 1, row0, sizeof (row0));
char row1[64]; make_GLSL_srcarg_string_full(ctx, 2, row1, sizeof (row1));
char row2[64]; make_GLSL_srcarg_string_full(ctx, 3, row2, sizeof (row2));
char code[256];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec3(dot(%s, %s), dot(%s, %s), dot(%s, %s))",
src0, row0, src0, row1, src0, row2);
output_line(ctx, "%s", code);
} // emit_GLSL_M4X3
static void emit_GLSL_M3X4(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
char row0[64]; make_GLSL_srcarg_string_vec3(ctx, 1, row0, sizeof (row0));
char row1[64]; make_GLSL_srcarg_string_vec3(ctx, 2, row1, sizeof (row1));
char row2[64]; make_GLSL_srcarg_string_vec3(ctx, 3, row2, sizeof (row2));
char row3[64]; make_GLSL_srcarg_string_vec3(ctx, 4, row3, sizeof (row3));
char code[256];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec4(dot(%s, %s), dot(%s, %s), "
"dot(%s, %s), dot(%s, %s))",
src0, row0, src0, row1,
src0, row2, src0, row3);
output_line(ctx, "%s", code);
} // emit_GLSL_M3X4
static void emit_GLSL_M3X3(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
char row0[64]; make_GLSL_srcarg_string_vec3(ctx, 1, row0, sizeof (row0));
char row1[64]; make_GLSL_srcarg_string_vec3(ctx, 2, row1, sizeof (row1));
char row2[64]; make_GLSL_srcarg_string_vec3(ctx, 3, row2, sizeof (row2));
char code[256];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec3(dot(%s, %s), dot(%s, %s), dot(%s, %s))",
src0, row0, src0, row1, src0, row2);
output_line(ctx, "%s", code);
} // emit_GLSL_M3X3
static void emit_GLSL_M3X2(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
char row0[64]; make_GLSL_srcarg_string_vec3(ctx, 1, row0, sizeof (row0));
char row1[64]; make_GLSL_srcarg_string_vec3(ctx, 2, row1, sizeof (row1));
char code[256];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec2(dot(%s, %s), dot(%s, %s))",
src0, row0, src0, row1);
output_line(ctx, "%s", code);
} // emit_GLSL_M3X2
static void emit_GLSL_CALL(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
if (ctx->loops > 0)
output_line(ctx, "%s(aL);", src0);
else
output_line(ctx, "%s();", src0);
} // emit_GLSL_CALL
static void emit_GLSL_CALLNZ(Context *ctx)
{
// !!! FIXME: if src1 is a constbool that's true, we can remove the
// !!! FIXME: if. If it's false, we can make this a no-op.
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
if (ctx->loops > 0)
output_line(ctx, "if (%s) { %s(aL); }", src1, src0);
else
output_line(ctx, "if (%s) { %s(); }", src1, src0);
} // emit_GLSL_CALLNZ
static void emit_GLSL_LOOP(Context *ctx)
{
// !!! FIXME: swizzle?
char var[64]; get_GLSL_srcarg_varname(ctx, 1, var, sizeof (var));
assert(ctx->source_args[0].regnum == 0); // in case they add aL1 someday.
output_line(ctx, "{");
ctx->indent++;
output_line(ctx, "const int aLend = %s.x + %s.y;", var, var);
output_line(ctx, "for (int aL = %s.y; aL < aLend; aL += %s.z) {", var, var);
ctx->indent++;
} // emit_GLSL_LOOP
static void emit_GLSL_RET(Context *ctx)
{
// thankfully, the MSDN specs say a RET _has_ to end a function...no
// early returns. So if you hit one, you know you can safely close
// a high-level function.
ctx->indent--;
output_line(ctx, "}");
output_blank_line(ctx);
set_output(ctx, &ctx->subroutines);
} // emit_GLSL_RET
static void emit_GLSL_ENDLOOP(Context *ctx)
{
ctx->indent--;
output_line(ctx, "}");
ctx->indent--;
output_line(ctx, "}");
} // emit_GLSL_ENDLOOP
static void emit_GLSL_LABEL(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
const int label = ctx->source_args[0].regnum;
RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, label);
assert(ctx->output == ctx->subroutines); // not mainline, etc.
assert(ctx->indent == 0); // we shouldn't be in the middle of a function.
// MSDN specs say CALL* has to come before the LABEL, so we know if we
// can ditch the entire function here as unused.
if (reg == NULL)
set_output(ctx, &ctx->ignore); // Func not used. Parse, but don't output.
// !!! FIXME: it would be nice if we could determine if a function is
// !!! FIXME: only called once and, if so, forcibly inline it.
const char *uses_loopreg = ((reg) && (reg->misc == 1)) ? "int aL" : "";
output_line(ctx, "void %s(%s)", src0, uses_loopreg);
output_line(ctx, "{");
ctx->indent++;
} // emit_GLSL_LABEL
static void emit_GLSL_DCL(Context *ctx)
{
// no-op. We do this in our emit_attribute() and emit_uniform().
} // emit_GLSL_DCL
static void emit_GLSL_POW(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"pow(abs(%s), %s)", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_POW
static void emit_GLSL_CRS(Context *ctx)
{
// !!! FIXME: needs to take ctx->dst_arg.writemask into account.
char src0[64]; make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_vec3(ctx, 1, src1, sizeof (src1));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"cross(%s, %s)", src0, src1);
output_line(ctx, "%s", code);
} // emit_GLSL_CRS
static void emit_GLSL_SGN(Context *ctx)
{
// (we don't need the temporary registers specified for the D3D opcode.)
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "sign(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_SGN
static void emit_GLSL_ABS(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "abs(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_ABS
static void emit_GLSL_NRM(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "normalize(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_NRM
static void emit_GLSL_SINCOS(Context *ctx)
{
// we don't care about the temp registers that <= sm2 demands; ignore them.
// sm2 also talks about what components are left untouched vs. undefined,
// but we just leave those all untouched with GLSL write masks (which
// would fulfill the "undefined" requirement, too).
const int mask = ctx->dest_arg.writemask;
char src0[64]; make_GLSL_srcarg_string_scalar(ctx, 0, src0, sizeof (src0));
char code[128] = { '\0' };
if (writemask_x(mask))
make_GLSL_destarg_assign(ctx, code, sizeof (code), "cos(%s)", src0);
else if (writemask_y(mask))
make_GLSL_destarg_assign(ctx, code, sizeof (code), "sin(%s)", src0);
else if (writemask_xy(mask))
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec2(cos(%s), sin(%s))", src0, src0);
} // else if
output_line(ctx, "%s", code);
} // emit_GLSL_SINCOS
static void emit_GLSL_REP(Context *ctx)
{
// !!! FIXME:
// msdn docs say legal loop values are 0 to 255. We can check DEFI values
// at parse time, but if they are pulling a value from a uniform, do
// we clamp here?
// !!! FIXME: swizzle is legal here, right?
char src0[64]; make_GLSL_srcarg_string_x(ctx, 0, src0, sizeof (src0));
const uint rep = (uint) ctx->reps;
output_line(ctx, "for (int rep%u = 0; rep%u < %s; rep%u++) {",
rep, rep, src0, rep);
ctx->indent++;
} // emit_GLSL_REP
static void emit_GLSL_ENDREP(Context *ctx)
{
ctx->indent--;
output_line(ctx, "}");
} // emit_GLSL_ENDREP
static void emit_GLSL_IF(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_scalar(ctx, 0, src0, sizeof (src0));
output_line(ctx, "if (%s) {", src0);
ctx->indent++;
} // emit_GLSL_IF
static void emit_GLSL_IFC(Context *ctx)
{
const char *comp = get_GLSL_comparison_string_scalar(ctx);
char src0[64]; make_GLSL_srcarg_string_scalar(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_scalar(ctx, 1, src1, sizeof (src1));
output_line(ctx, "if (%s %s %s) {", src0, comp, src1);
ctx->indent++;
} // emit_GLSL_IFC
static void emit_GLSL_ELSE(Context *ctx)
{
ctx->indent--;
output_line(ctx, "} else {");
ctx->indent++;
} // emit_GLSL_ELSE
static void emit_GLSL_ENDIF(Context *ctx)
{
ctx->indent--;
output_line(ctx, "}");
} // emit_GLSL_ENDIF
static void emit_GLSL_BREAK(Context *ctx)
{
output_line(ctx, "break;");
} // emit_GLSL_BREAK
static void emit_GLSL_BREAKC(Context *ctx)
{
const char *comp = get_GLSL_comparison_string_scalar(ctx);
char src0[64]; make_GLSL_srcarg_string_scalar(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_scalar(ctx, 1, src1, sizeof (src1));
output_line(ctx, "if (%s %s %s) { break; }", src0, comp, src1);
} // emit_GLSL_BREAKC
static void emit_GLSL_MOVA(Context *ctx)
{
const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask);
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
if (vecsize == 1)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"int(floor(abs(%s) + 0.5) * sign(%s))",
src0, src0);
} // if
else
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"ivec%d(floor(abs(%s) + vec%d(0.5)) * sign(%s))",
vecsize, src0, vecsize, src0);
} // else
output_line(ctx, "%s", code);
} // emit_GLSL_MOVA
static void emit_GLSL_DEFB(Context *ctx)
{
char varname[64]; get_GLSL_destarg_varname(ctx, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
output_line(ctx, "const bool %s = %s;",
varname, ctx->dwords[0] ? "true" : "false");
pop_output(ctx);
} // emit_GLSL_DEFB
static void emit_GLSL_DEFI(Context *ctx)
{
char varname[64]; get_GLSL_destarg_varname(ctx, varname, sizeof (varname));
const int32 *x = (const int32 *) ctx->dwords;
push_output(ctx, &ctx->globals);
output_line(ctx, "const ivec4 %s = ivec4(%d, %d, %d, %d);",
varname, (int) x[0], (int) x[1], (int) x[2], (int) x[3]);
pop_output(ctx);
} // emit_GLSL_DEFI
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXCRD)
static void emit_GLSL_TEXKILL(Context *ctx)
{
char dst[64]; get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "if (any(lessThan(%s.xyz, vec3(0.0)))) discard;", dst);
} // emit_GLSL_TEXKILL
static void glsl_texld(Context *ctx, const int texldd)
{
if (!shader_version_atleast(ctx, 1, 4))
{
DestArgInfo *info = &ctx->dest_arg;
char dst[64];
char sampler[64];
char code[128] = {0};
assert(!texldd);
RegisterList *sreg;
sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, info->regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
if (ttype == TEXTURE_TYPE_2D)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture2D(%s, %s.xy)",
sampler, dst);
}
else if (ttype == TEXTURE_TYPE_CUBE)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"textureCube(%s, %s.xyz)",
sampler, dst);
}
else if (ttype == TEXTURE_TYPE_VOLUME)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture3D(%s, %s.xyz)",
sampler, dst);
}
else
{
fail(ctx, "unexpected texture type");
} // else
output_line(ctx, "%s", code);
} // if
else if (!shader_version_atleast(ctx, 2, 0))
{
// ps_1_4 is different, too!
fail(ctx, "TEXLD == Shader Model 1.4 unimplemented."); // !!! FIXME
return;
} // else if
else
{
const SourceArgInfo *samp_arg = &ctx->source_args[1];
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
samp_arg->regnum);
const char *funcname = NULL;
char src0[64] = { '\0' };
char src1[64]; get_GLSL_srcarg_varname(ctx, 1, src1, sizeof (src1)); // !!! FIXME: SRC_MOD?
char src2[64] = { '\0' };
char src3[64] = { '\0' };
if (sreg == NULL)
{
fail(ctx, "TEXLD using undeclared sampler");
return;
} // if
if (texldd)
{
make_GLSL_srcarg_string_vec2(ctx, 2, src2, sizeof (src2));
make_GLSL_srcarg_string_vec2(ctx, 3, src3, sizeof (src3));
} // if
// !!! FIXME: can TEXLDD set instruction_controls?
// !!! FIXME: does the d3d bias value map directly to GLSL?
const char *biassep = "";
char bias[64] = { '\0' };
if (ctx->instruction_controls == CONTROL_TEXLDB)
{
biassep = ", ";
make_GLSL_srcarg_string_w(ctx, 0, bias, sizeof (bias));
} // if
switch ((const TextureType) sreg->index)
{
case TEXTURE_TYPE_2D:
if (ctx->instruction_controls == CONTROL_TEXLDP)
{
funcname = "texture2DProj";
make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
} // if
else // texld/texldb
{
funcname = "texture2D";
make_GLSL_srcarg_string_vec2(ctx, 0, src0, sizeof (src0));
} // else
break;
case TEXTURE_TYPE_CUBE:
if (ctx->instruction_controls == CONTROL_TEXLDP)
fail(ctx, "TEXLDP on a cubemap"); // !!! FIXME: is this legal?
funcname = "textureCube";
make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
break;
case TEXTURE_TYPE_VOLUME:
if (ctx->instruction_controls == CONTROL_TEXLDP)
{
funcname = "texture3DProj";
make_GLSL_srcarg_string_full(ctx, 0, src0, sizeof (src0));
} // if
else // texld/texldb
{
funcname = "texture3D";
make_GLSL_srcarg_string_vec3(ctx, 0, src0, sizeof (src0));
} // else
break;
default:
fail(ctx, "unknown texture type");
return;
} // switch
assert(!isscalar(ctx, ctx->shader_type, samp_arg->regtype, samp_arg->regnum));
char swiz_str[6] = { '\0' };
make_GLSL_swizzle_string(swiz_str, sizeof (swiz_str),
samp_arg->swizzle, ctx->dest_arg.writemask);
char code[128];
if (texldd)
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"%sGrad(%s, %s, %s, %s)%s", funcname,
src1, src0, src2, src3, swiz_str);
} // if
else
{
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"%s(%s, %s%s%s)%s", funcname,
src1, src0, biassep, bias, swiz_str);
} // else
output_line(ctx, "%s", code);
} // else
} // glsl_texld
static void emit_GLSL_TEXLD(Context *ctx)
{
glsl_texld(ctx, 0);
} // emit_GLSL_TEXLD
static void emit_GLSL_TEXBEM(Context *ctx)
{
DestArgInfo *info = &ctx->dest_arg;
char dst[64]; get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
char src[64]; get_GLSL_srcarg_varname(ctx, 0, src, sizeof (src));
char sampler[64];
char code[512];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture2D(%s, vec2(%s.x + (%s_texbem.x * %s.x) + (%s_texbem.z * %s.y),"
" %s.y + (%s_texbem.y * %s.x) + (%s_texbem.w * %s.y)))",
sampler,
dst, sampler, src, sampler, src,
dst, sampler, src, sampler, src);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXBEM
static void emit_GLSL_TEXBEML(Context *ctx)
{
// !!! FIXME: this code counts on the register not having swizzles, etc.
DestArgInfo *info = &ctx->dest_arg;
char dst[64]; get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
char src[64]; get_GLSL_srcarg_varname(ctx, 0, src, sizeof (src));
char sampler[64];
char code[512];
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"(texture2D(%s, vec2(%s.x + (%s_texbem.x * %s.x) + (%s_texbem.z * %s.y),"
" %s.y + (%s_texbem.y * %s.x) + (%s_texbem.w * %s.y)))) *"
" ((%s.z * %s_texbeml.x) + %s_texbem.y)",
sampler,
dst, sampler, src, sampler, src,
dst, sampler, src, sampler, src,
src, sampler, sampler);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXBEML
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2AR) // !!! FIXME
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2GB) // !!! FIXME
static void emit_GLSL_TEXM3X2PAD(Context *ctx)
{
// no-op ... work happens in emit_GLSL_TEXM3X2TEX().
} // emit_GLSL_TEXM3X2PAD
static void emit_GLSL_TEXM3X2TEX(Context *ctx)
{
if (ctx->texm3x2pad_src0 == -1)
return;
DestArgInfo *info = &ctx->dest_arg;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char sampler[64];
char code[512];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_src0,
src0, sizeof (src0));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_dst0,
src1, sizeof (src1));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src2, sizeof (src2));
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture2D(%s, vec2(dot(%s.xyz, %s.xyz), dot(%s.xyz, %s.xyz)))",
sampler, src0, src1, src2, dst);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXM3X2TEX
static void emit_GLSL_TEXM3X3PAD(Context *ctx)
{
// no-op ... work happens in emit_GLSL_TEXM3X3*().
} // emit_GLSL_TEXM3X3PAD
static void emit_GLSL_TEXM3X3TEX(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
DestArgInfo *info = &ctx->dest_arg;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char sampler[64];
char code[512];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
info->regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "Cube" : "3D";
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture%s(%s,"
" vec3(dot(%s.xyz, %s.xyz),"
" dot(%s.xyz, %s.xyz),"
" dot(%s.xyz, %s.xyz)))",
ttypestr, sampler, src0, src1, src2, src3, dst, src4);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXM3X3TEX
static void emit_GLSL_TEXM3X3SPEC_helper(Context *ctx)
{
if (ctx->glsl_generated_texm3x3spec_helper)
return;
ctx->glsl_generated_texm3x3spec_helper = 1;
push_output(ctx, &ctx->helpers);
output_line(ctx, "vec3 TEXM3X3SPEC_reflection(const vec3 normal, const vec3 eyeray)");
output_line(ctx, "{"); ctx->indent++;
output_line(ctx, "return (2.0 * ((normal * eyeray) / (normal * normal)) * normal) - eyeray;"); ctx->indent--;
output_line(ctx, "}");
output_blank_line(ctx);
pop_output(ctx);
} // emit_GLSL_TEXM3X3SPEC_helper
static void emit_GLSL_TEXM3X3SPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
DestArgInfo *info = &ctx->dest_arg;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char src5[64];
char sampler[64];
char code[512];
emit_GLSL_TEXM3X3SPEC_helper(ctx);
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[1].regnum,
src5, sizeof (src5));
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
info->regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "Cube" : "3D";
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture%s(%s, "
"TEXM3X3SPEC_reflection("
"vec3("
"dot(%s.xyz, %s.xyz), "
"dot(%s.xyz, %s.xyz), "
"dot(%s.xyz, %s.xyz)"
"),"
"%s.xyz,"
")"
")",
ttypestr, sampler, src0, src1, src2, src3, dst, src4, src5);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXM3X3SPEC
static void emit_GLSL_TEXM3X3VSPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
DestArgInfo *info = &ctx->dest_arg;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char sampler[64];
char code[512];
emit_GLSL_TEXM3X3SPEC_helper(ctx);
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_SAMPLER, info->regnum,
sampler, sizeof (sampler));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
info->regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "Cube" : "3D";
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"texture%s(%s, "
"TEXM3X3SPEC_reflection("
"vec3("
"dot(%s.xyz, %s.xyz), "
"dot(%s.xyz, %s.xyz), "
"dot(%s.xyz, %s.xyz)"
"), "
"vec3(%s.w, %s.w, %s.w)"
")"
")",
ttypestr, sampler, src0, src1, src2, src3, dst, src4, src0, src2, dst);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXM3X3VSPEC
static void emit_GLSL_EXPP(Context *ctx)
{
// !!! FIXME: msdn's asm docs don't list this opcode, I'll have to check the driver documentation.
emit_GLSL_EXP(ctx); // I guess this is just partial precision EXP?
} // emit_GLSL_EXPP
static void emit_GLSL_LOGP(Context *ctx)
{
// LOGP is just low-precision LOG, but we'll take the higher precision.
emit_GLSL_LOG(ctx);
} // emit_GLSL_LOGP
// common code between CMP and CND.
static void emit_GLSL_comparison_operations(Context *ctx, const char *cmp)
{
int i, j;
DestArgInfo *dst = &ctx->dest_arg;
const SourceArgInfo *srcarg0 = &ctx->source_args[0];
const int origmask = dst->writemask;
int used_swiz[4] = { 0, 0, 0, 0 };
const int writemask[4] = { dst->writemask0, dst->writemask1,
dst->writemask2, dst->writemask3 };
const int src0swiz[4] = { srcarg0->swizzle_x, srcarg0->swizzle_y,
srcarg0->swizzle_z, srcarg0->swizzle_w };
for (i = 0; i < 4; i++)
{
int mask = (1 << i);
if (!writemask[i]) continue;
if (used_swiz[i]) continue;
// This is a swizzle we haven't checked yet.
used_swiz[i] = 1;
// see if there are any other elements swizzled to match (.yyyy)
for (j = i + 1; j < 4; j++)
{
if (!writemask[j]) continue;
if (src0swiz[i] != src0swiz[j]) continue;
mask |= (1 << j);
used_swiz[j] = 1;
} // for
// okay, (mask) should be the writemask of swizzles we like.
//return make_GLSL_srcarg_string(ctx, idx, (1 << 0));
char src0[64];
char src1[64];
char src2[64];
make_GLSL_srcarg_string(ctx, 0, (1 << i), src0, sizeof (src0));
make_GLSL_srcarg_string(ctx, 1, mask, src1, sizeof (src1));
make_GLSL_srcarg_string(ctx, 2, mask, src2, sizeof (src2));
set_dstarg_writemask(dst, mask);
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"((%s %s) ? %s : %s)",
src0, cmp, src1, src2);
output_line(ctx, "%s", code);
} // for
set_dstarg_writemask(dst, origmask);
} // emit_GLSL_comparison_operations
static void emit_GLSL_CND(Context *ctx)
{
emit_GLSL_comparison_operations(ctx, "> 0.5");
} // emit_GLSL_CND
static void emit_GLSL_DEF(Context *ctx)
{
const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int?
char varname[64]; get_GLSL_destarg_varname(ctx, varname, sizeof (varname));
char val0[32]; floatstr(ctx, val0, sizeof (val0), val[0], 1);
char val1[32]; floatstr(ctx, val1, sizeof (val1), val[1], 1);
char val2[32]; floatstr(ctx, val2, sizeof (val2), val[2], 1);
char val3[32]; floatstr(ctx, val3, sizeof (val3), val[3], 1);
push_output(ctx, &ctx->globals);
output_line(ctx, "const vec4 %s = vec4(%s, %s, %s, %s);",
varname, val0, val1, val2, val3);
pop_output(ctx);
} // emit_GLSL_DEF
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2RGB) // !!! FIXME
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3TEX) // !!! FIXME
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXM3X2DEPTH) // !!! FIXME
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3) // !!! FIXME
static void emit_GLSL_TEXM3X3(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char code[512];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_GLSL_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_GLSL_destarg_varname(ctx, dst, sizeof (dst));
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"vec4(dot(%s.xyz, %s.xyz), dot(%s.xyz, %s.xyz), dot(%s.xyz, %s.xyz), 1.0)",
src0, src1, src2, src3, dst, src4);
output_line(ctx, "%s", code);
} // emit_GLSL_TEXM3X3
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(TEXDEPTH) // !!! FIXME
static void emit_GLSL_CMP(Context *ctx)
{
emit_GLSL_comparison_operations(ctx, ">= 0.0");
} // emit_GLSL_CMP
EMIT_GLSL_OPCODE_UNIMPLEMENTED_FUNC(BEM) // !!! FIXME
static void emit_GLSL_DP2ADD(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_vec2(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_vec2(ctx, 1, src1, sizeof (src1));
char src2[64]; make_GLSL_srcarg_string_scalar(ctx, 2, src2, sizeof (src2));
char extra[64]; snprintf(extra, sizeof (extra), " + %s", src2);
emit_GLSL_dotprod(ctx, src0, src1, extra);
} // emit_GLSL_DP2ADD
static void emit_GLSL_DSX(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "dFdx(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_DSX
static void emit_GLSL_DSY(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char code[128];
make_GLSL_destarg_assign(ctx, code, sizeof (code), "dFdy(%s)", src0);
output_line(ctx, "%s", code);
} // emit_GLSL_DSY
static void emit_GLSL_TEXLDD(Context *ctx)
{
// !!! FIXME:
// GLSL 1.30 introduced textureGrad() for this, but it looks like the
// functions are overloaded instead of texture2DGrad() (etc).
// GL_shader_texture_lod and GL_EXT_gpu_shader4 added texture2DGrad*(),
// so we'll use them if available. Failing that, we'll just fallback
// to a regular texture2D call and hope the mipmap it chooses is close
// enough.
if (!ctx->glsl_generated_texldd_setup)
{
ctx->glsl_generated_texldd_setup = 1;
push_output(ctx, &ctx->preflight);
output_line(ctx, "#if GL_ARB_shader_texture_lod");
output_line(ctx, "#extension GL_ARB_shader_texture_lod : enable");
output_line(ctx, "#define texture2DGrad texture2DGradARB");
output_line(ctx, "#define texture2DProjGrad texture2DProjARB");
output_line(ctx, "#elif GL_EXT_gpu_shader4");
output_line(ctx, "#extension GL_EXT_gpu_shader4 : enable");
output_line(ctx, "#else");
output_line(ctx, "#define texture2DGrad(a,b,c,d) texture2D(a,b)");
output_line(ctx, "#define texture2DProjGrad(a,b,c,d) texture2DProj(a,b)");
output_line(ctx, "#endif");
output_blank_line(ctx);
pop_output(ctx);
} // if
glsl_texld(ctx, 1);
} // emit_GLSL_TEXLDD
static void emit_GLSL_SETP(Context *ctx)
{
const int vecsize = vecsize_from_writemask(ctx->dest_arg.writemask);
char src0[64]; make_GLSL_srcarg_string_masked(ctx, 0, src0, sizeof (src0));
char src1[64]; make_GLSL_srcarg_string_masked(ctx, 1, src1, sizeof (src1));
char code[128];
// destination is always predicate register (which is type bvec4).
if (vecsize == 1)
{
const char *comp = get_GLSL_comparison_string_scalar(ctx);
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"(%s %s %s)", src0, comp, src1);
} // if
else
{
const char *comp = get_GLSL_comparison_string_vector(ctx);
make_GLSL_destarg_assign(ctx, code, sizeof (code),
"%s(%s, %s)", comp, src0, src1);
} // else
output_line(ctx, "%s", code);
} // emit_GLSL_SETP
static void emit_GLSL_TEXLDL(Context *ctx)
{
// !!! FIXME: The spec says we can't use GLSL's texture*Lod() built-ins
// !!! FIXME: from fragment shaders for some inexplicable reason.
// !!! FIXME: For now, you'll just have to suffer with the potentially
// !!! FIXME: wrong mipmap until I can figure something out.
emit_GLSL_TEXLD(ctx);
} // emit_GLSL_TEXLDL
static void emit_GLSL_BREAKP(Context *ctx)
{
char src0[64]; make_GLSL_srcarg_string_scalar(ctx, 0, src0, sizeof (src0));
output_line(ctx, "if (%s) { break; }", src0);
} // emit_GLSL_BREAKP
static void emit_GLSL_RESERVED(Context *ctx)
{
// do nothing; fails in the state machine.
} // emit_GLSL_RESERVED
#endif // SUPPORT_PROFILE_GLSL
#if !SUPPORT_PROFILE_ARB1
#define PROFILE_EMITTER_ARB1(op)
#else
#undef AT_LEAST_ONE_PROFILE
#define AT_LEAST_ONE_PROFILE 1
#define PROFILE_EMITTER_ARB1(op) emit_ARB1_##op,
static inline const char *get_ARB1_register_string(Context *ctx,
const RegisterType regtype, const int regnum,
char *regnum_str, const size_t regnum_size)
{
// turns out these are identical at the moment.
return get_D3D_register_string(ctx,regtype,regnum,regnum_str,regnum_size);
} // get_ARB1_register_string
static const char *allocate_ARB1_scratch_reg_name(Context *ctx, char *buf,
const size_t buflen)
{
const int scratch = allocate_scratch_register(ctx);
snprintf(buf, buflen, "scratch%d", scratch);
return buf;
} // allocate_ARB1_scratch_reg_name
static inline const char *get_ARB1_branch_label_name(Context *ctx, const int id,
char *buf, const size_t buflen)
{
snprintf(buf, buflen, "branch_label%d", id);
return buf;
} // get_ARB1_branch_label_name
static const char *get_ARB1_varname_in_buf(Context *ctx, const RegisterType rt,
const int regnum, char *buf,
const size_t buflen)
{
// turns out these are identical at the moment.
return get_D3D_varname_in_buf(ctx, rt, regnum, buf, buflen);
} // get_ARB1_varname_in_buf
static const char *get_ARB1_varname(Context *ctx, const RegisterType rt,
const int regnum)
{
// turns out these are identical at the moment.
return get_D3D_varname(ctx, rt, regnum);
} // get_ARB1_varname
static inline const char *get_ARB1_const_array_varname_in_buf(Context *ctx,
const int base, const int size,
char *buf, const size_t buflen)
{
snprintf(buf, buflen, "c_array_%d_%d", base, size);
return buf;
} // get_ARB1_const_array_varname_in_buf
static const char *get_ARB1_const_array_varname(Context *ctx, int base, int size)
{
char buf[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, buf, sizeof (buf));
return StrDup(ctx, buf);
} // get_ARB1_const_array_varname
static const char *make_ARB1_srcarg_string_in_buf(Context *ctx,
const SourceArgInfo *arg,
char *buf, size_t buflen)
{
// !!! FIXME: this can hit pathological cases where we look like this...
//
// dp3 r1.xyz, t0_bx2, t0_bx2
// mad r1.xyz, t0_bias, 1-r1, t0_bx2
//
// ...which do a lot of duplicate work in arb1...
//
// SUB scratch0, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch0, scratch0, { 2.0, 2.0, 2.0, 2.0 };
// SUB scratch1, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch1, scratch1, { 2.0, 2.0, 2.0, 2.0 };
// DP3 r1.xyz, scratch0, scratch1;
// SUB scratch0, t0, { 0.5, 0.5, 0.5, 0.5 };
// SUB scratch1, { 1.0, 1.0, 1.0, 1.0 }, r1;
// SUB scratch2, t0, { 0.5, 0.5, 0.5, 0.5 };
// MUL scratch2, scratch2, { 2.0, 2.0, 2.0, 2.0 };
// MAD r1.xyz, scratch0, scratch1, scratch2;
//
// ...notice that the dp3 calculates the same value into two scratch
// registers. This case is easier to handle; just see if multiple
// source args are identical, build it up once, and use the same
// scratch register for multiple arguments in that opcode.
// Even better still, only calculate things once across instructions,
// and be smart about letting it linger in a scratch register until we
// definitely don't need the calculation anymore. That's harder to
// write, though.
char regnum_str[16] = { '\0' };
// !!! FIXME: use get_ARB1_varname_in_buf() instead?
const char *regtype_str = NULL;
if (!arg->relative)
{
regtype_str = get_ARB1_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
} // if
const char *rel_lbracket = "";
char rel_offset[32] = { '\0' };
const char *rel_rbracket = "";
char rel_swizzle[4] = { '\0' };
const char *rel_regtype_str = "";
if (arg->relative)
{
rel_regtype_str = get_ARB1_varname_in_buf(ctx, arg->relative_regtype,
arg->relative_regnum,
(char *) alloca(64), 64);
rel_swizzle[0] = '.';
rel_swizzle[1] = swizzle_channels[arg->relative_component];
rel_swizzle[2] = '\0';
if (!support_nv2(ctx))
{
// The address register in ARB1 only allows the '.x' component, so
// we need to load the component we need from a temp vector
// register into .x as needed.
assert(arg->relative_regtype == REG_TYPE_ADDRESS);
assert(arg->relative_regnum == 0);
if (ctx->last_address_reg_component != arg->relative_component)
{
output_line(ctx, "ARL %s.x, addr%d.%c;", rel_regtype_str,
arg->relative_regnum,
swizzle_channels[arg->relative_component]);
ctx->last_address_reg_component = arg->relative_component;
} // if
rel_swizzle[1] = 'x';
} // if
if (arg->regtype == REG_TYPE_INPUT)
regtype_str = "vertex.attrib";
else
{
assert(arg->regtype == REG_TYPE_CONST);
const int arrayidx = arg->relative_array->index;
const int arraysize = arg->relative_array->count;
const int offset = arg->regnum - arrayidx;
assert(offset >= 0);
regtype_str = get_ARB1_const_array_varname_in_buf(ctx, arrayidx,
arraysize, (char *) alloca(64), 64);
if (offset != 0)
snprintf(rel_offset, sizeof (rel_offset), " + %d", offset);
} // else
rel_lbracket = "[";
rel_rbracket = "]";
} // if
// This is the source register with everything but swizzle and source mods.
snprintf(buf, buflen, "%s%s%s%s%s%s%s", regtype_str, regnum_str,
rel_lbracket, rel_regtype_str, rel_swizzle, rel_offset,
rel_rbracket);
// Some of the source mods need to generate instructions to a temp
// register, in which case we'll replace the register name.
const SourceMod mod = arg->src_mod;
const int inplace = ( (mod == SRCMOD_NONE) || (mod == SRCMOD_NEGATE) ||
((mod == SRCMOD_ABS) && support_nv2(ctx)) );
if (!inplace)
{
const size_t len = 64;
char *stackbuf = (char *) alloca(len);
regtype_str = allocate_ARB1_scratch_reg_name(ctx, stackbuf, len);
regnum_str[0] = '\0'; // move value to scratch register.
rel_lbracket = ""; // scratch register won't use array.
rel_rbracket = "";
rel_offset[0] = '\0';
rel_swizzle[0] = '\0';
rel_regtype_str = "";
} // if
const char *premod_str = "";
const char *postmod_str = "";
switch (mod)
{
case SRCMOD_NEGATE:
premod_str = "-";
break;
case SRCMOD_BIASNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_BIAS:
output_line(ctx, "SUB %s, %s, { 0.5, 0.5, 0.5, 0.5 };",
regtype_str, buf);
break;
case SRCMOD_SIGNNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_SIGN:
output_line(ctx,
"MAD %s, %s, { 2.0, 2.0, 2.0, 2.0 }, { -1.0, -1.0, -1.0, -1.0 };",
regtype_str, buf);
break;
case SRCMOD_COMPLEMENT:
output_line(ctx, "SUB %s, { 1.0, 1.0, 1.0, 1.0 }, %s;",
regtype_str, buf);
break;
case SRCMOD_X2NEGATE:
premod_str = "-";
// fall through.
case SRCMOD_X2:
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };",
regtype_str, buf);
break;
case SRCMOD_DZ:
fail(ctx, "SRCMOD_DZ currently unsupported in arb1");
postmod_str = "_dz";
break;
case SRCMOD_DW:
fail(ctx, "SRCMOD_DW currently unsupported in arb1");
postmod_str = "_dw";
break;
case SRCMOD_ABSNEGATE:
premod_str = "-";
// fall through.
case SRCMOD_ABS:
if (!support_nv2(ctx)) // GL_NV_vertex_program2_option adds this.
output_line(ctx, "ABS %s, %s;", regtype_str, buf);
else
{
premod_str = (mod == SRCMOD_ABSNEGATE) ? "-|" : "|";
postmod_str = "|";
} // else
break;
case SRCMOD_NOT:
fail(ctx, "SRCMOD_NOT currently unsupported in arb1");
premod_str = "!";
break;
case SRCMOD_NONE:
case SRCMOD_TOTAL:
break; // stop compiler whining.
} // switch
char swizzle_str[6];
size_t i = 0;
if (support_nv4(ctx)) // vFace must be output as "vFace.x" in nv4.
{
if (arg->regtype == REG_TYPE_MISCTYPE)
{
if ( ((const MiscTypeType) arg->regnum) == MISCTYPE_TYPE_FACE )
{
swizzle_str[i++] = '.';
swizzle_str[i++] = 'x';
} // if
} // if
} // if
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !no_swizzle(arg->swizzle))
{
swizzle_str[i++] = '.';
// .xxxx is the same as .x, but .xx is illegal...scalar or full!
if (replicate_swizzle(arg->swizzle))
swizzle_str[i++] = swizzle_channels[arg->swizzle_x];
else
{
swizzle_str[i++] = swizzle_channels[arg->swizzle_x];
swizzle_str[i++] = swizzle_channels[arg->swizzle_y];
swizzle_str[i++] = swizzle_channels[arg->swizzle_z];
swizzle_str[i++] = swizzle_channels[arg->swizzle_w];
} // else
} // if
swizzle_str[i] = '\0';
assert(i < sizeof (swizzle_str));
snprintf(buf, buflen, "%s%s%s%s%s%s%s%s%s%s", premod_str,
regtype_str, regnum_str, rel_lbracket,
rel_regtype_str, rel_swizzle, rel_offset, rel_rbracket,
swizzle_str, postmod_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_ARB1_srcarg_string_in_buf
static const char *get_ARB1_destarg_varname(Context *ctx, char *buf,
const size_t buflen)
{
const DestArgInfo *arg = &ctx->dest_arg;
return get_ARB1_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, buflen);
} // get_ARB1_destarg_varname
static const char *get_ARB1_srcarg_varname(Context *ctx, const size_t idx,
char *buf, const size_t buflen)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return get_ARB1_varname_in_buf(ctx, arg->regtype, arg->regnum, buf, buflen);
} // get_ARB1_srcarg_varname
static const char *make_ARB1_destarg_string(Context *ctx, char *buf,
const size_t buflen)
{
const DestArgInfo *arg = &ctx->dest_arg;
*buf = '\0';
const char *sat_str = "";
if (arg->result_mod & MOD_SATURATE)
{
// nv4 can use ".SAT" in all program types.
// For less than nv4, the "_SAT" modifier is only available in
// fragment shaders. Every thing else will fake it later in
// emit_ARB1_dest_modifiers() ...
if (support_nv4(ctx))
sat_str = ".SAT";
else if (shader_is_pixel(ctx))
sat_str = "_SAT";
} // if
const char *pp_str = "";
if (arg->result_mod & MOD_PP)
{
// Most ARB1 profiles can't do partial precision (MOD_PP), but that's
// okay. The spec says lots of Direct3D implementations ignore the
// flag anyhow.
if (support_nv4(ctx))
pp_str = "H";
} // if
// CENTROID only allowed in DCL opcodes, which shouldn't come through here.
assert((arg->result_mod & MOD_CENTROID) == 0);
char regnum_str[16];
const char *regtype_str = get_ARB1_register_string(ctx, arg->regtype,
arg->regnum, regnum_str,
sizeof (regnum_str));
if (regtype_str == NULL)
{
fail(ctx, "Unknown destination register type.");
return buf;
} // if
char writemask_str[6];
size_t i = 0;
const int scalar = isscalar(ctx, ctx->shader_type, arg->regtype, arg->regnum);
if (!scalar && !writemask_xyzw(arg->writemask))
{
writemask_str[i++] = '.';
if (arg->writemask0) writemask_str[i++] = 'x';
if (arg->writemask1) writemask_str[i++] = 'y';
if (arg->writemask2) writemask_str[i++] = 'z';
if (arg->writemask3) writemask_str[i++] = 'w';
} // if
writemask_str[i] = '\0';
assert(i < sizeof (writemask_str));
const char *pred_left = "";
const char *pred_right = "";
char pred[32] = { '\0' };
if (ctx->predicated)
{
fail(ctx, "dest register predication currently unsupported in arb1");
return buf;
pred_left = "(";
pred_right = ") ";
make_ARB1_srcarg_string_in_buf(ctx, &ctx->predicate_arg,
pred, sizeof (pred));
} // if
snprintf(buf, buflen, "%s%s %s%s%s", pp_str, sat_str,
regtype_str, regnum_str, writemask_str);
// !!! FIXME: make sure the scratch buffer was large enough.
return buf;
} // make_ARB1_destarg_string
static void emit_ARB1_dest_modifiers(Context *ctx)
{
const DestArgInfo *arg = &ctx->dest_arg;
if (arg->result_shift != 0x0)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
const char *multiplier = NULL;
switch (arg->result_shift)
{
case 0x1: multiplier = "2.0"; break;
case 0x2: multiplier = "4.0"; break;
case 0x3: multiplier = "8.0"; break;
case 0xD: multiplier = "0.125"; break;
case 0xE: multiplier = "0.25"; break;
case 0xF: multiplier = "0.5"; break;
} // switch
if (multiplier != NULL)
{
char var[64]; get_ARB1_destarg_varname(ctx, var, sizeof (var));
output_line(ctx, "MUL%s, %s, %s;", dst, var, multiplier);
} // if
} // if
if (arg->result_mod & MOD_SATURATE)
{
// nv4 and/or pixel shaders just used the "SAT" modifier, instead.
if ( (!support_nv4(ctx)) && (!shader_is_pixel(ctx)) )
{
char var[64]; get_ARB1_destarg_varname(ctx, var, sizeof (var));
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
output_line(ctx, "MIN%s, %s, 1.0;", dst, var);
output_line(ctx, "MAX%s, %s, 0.0;", dst, var);
} // if
} // if
} // emit_ARB1_dest_modifiers
static const char *make_ARB1_srcarg_string(Context *ctx, const size_t idx,
char *buf, const size_t buflen)
{
if (idx >= STATICARRAYLEN(ctx->source_args))
{
fail(ctx, "Too many source args");
*buf = '\0';
return buf;
} // if
const SourceArgInfo *arg = &ctx->source_args[idx];
return make_ARB1_srcarg_string_in_buf(ctx, arg, buf, buflen);
} // make_ARB1_srcarg_string
static void emit_ARB1_opcode_ds(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
output_line(ctx, "%s%s, %s;", opcode, dst, src0);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_ds
static void emit_ARB1_opcode_dss(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
output_line(ctx, "%s%s, %s, %s;", opcode, dst, src0, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_dss
static void emit_ARB1_opcode_dsss(Context *ctx, const char *opcode)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
output_line(ctx, "%s%s, %s, %s, %s;", opcode, dst, src0, src1, src2);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_opcode_dsss
#define EMIT_ARB1_OPCODE_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_D_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_d(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_S_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_s(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_SS_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_ss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DS_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_ds(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSS_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSSS_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dsss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_DSSSS_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
emit_ARB1_opcode_dssss(ctx, #op); \
}
#define EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(op) \
static void emit_ARB1_##op(Context *ctx) { \
failf(ctx, #op " unimplemented in %s profile", ctx->profile->name); \
}
static void emit_ARB1_start(Context *ctx, const char *profilestr)
{
const char *shader_str = NULL;
const char *shader_full_str = NULL;
if (shader_is_vertex(ctx))
{
shader_str = "vp";
shader_full_str = "vertex";
} // if
else if (shader_is_pixel(ctx))
{
shader_str = "fp";
shader_full_str = "fragment";
} // else if
else
{
failf(ctx, "Shader type %u unsupported in this profile.",
(uint) ctx->shader_type);
return;
} // if
set_output(ctx, &ctx->preflight);
if (strcmp(profilestr, MOJOSHADER_PROFILE_ARB1) == 0)
output_line(ctx, "!!ARB%s1.0", shader_str);
#if SUPPORT_PROFILE_ARB1_NV
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV2) == 0)
{
ctx->profile_supports_nv2 = 1;
output_line(ctx, "!!ARB%s1.0", shader_str);
output_line(ctx, "OPTION NV_%s_program2;", shader_full_str);
} // else if
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV3) == 0)
{
// there's no NV_fragment_program3, so just use 2.
const int ver = shader_is_pixel(ctx) ? 2 : 3;
ctx->profile_supports_nv2 = 1;
ctx->profile_supports_nv3 = 1;
output_line(ctx, "!!ARB%s1.0", shader_str);
output_line(ctx, "OPTION NV_%s_program%d;", shader_full_str, ver);
} // else if
else if (strcmp(profilestr, MOJOSHADER_PROFILE_NV4) == 0)
{
ctx->profile_supports_nv2 = 1;
ctx->profile_supports_nv3 = 1;
ctx->profile_supports_nv4 = 1;
output_line(ctx, "!!NV%s4.0", shader_str);
} // else if
#endif
else
{
failf(ctx, "Profile '%s' unsupported or unknown.", profilestr);
} // else
set_output(ctx, &ctx->mainline);
} // emit_ARB1_start
static void emit_ARB1_end(Context *ctx)
{
// ps_1_* writes color to r0 instead oC0. We move it to the right place.
// We don't have to worry about a RET opcode messing this up, since
// RET isn't available before ps_2_0.
if (shader_is_pixel(ctx) && !shader_version_atleast(ctx, 2, 0))
{
set_used_register(ctx, REG_TYPE_COLOROUT, 0, 1);
output_line(ctx, "MOV oC0, r0;");
} // if
output_line(ctx, "END");
} // emit_ARB1_end
static void emit_ARB1_phase(Context *ctx)
{
// no-op in arb1.
} // emit_ARB1_phase
static inline const char *arb1_float_temp(const Context *ctx)
{
// nv4 lets you specify data type.
return (support_nv4(ctx)) ? "FLOAT TEMP" : "TEMP";
} // arb1_float_temp
static void emit_ARB1_finalize(Context *ctx)
{
push_output(ctx, &ctx->preflight);
if (shader_is_vertex(ctx) && !ctx->arb1_wrote_position)
output_line(ctx, "OPTION ARB_position_invariant;");
if (shader_is_pixel(ctx) && ctx->have_multi_color_outputs)
output_line(ctx, "OPTION ARB_draw_buffers;");
pop_output(ctx);
const char *tmpstr = arb1_float_temp(ctx);
int i;
push_output(ctx, &ctx->globals);
for (i = 0; i < ctx->max_scratch_registers; i++)
{
char buf[64];
allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "%s %s;", tmpstr, buf);
} // for
// nv2 fragment programs (and anything nv4) have a real REP/ENDREP.
if ( (support_nv2(ctx)) && (!shader_is_pixel(ctx)) && (!support_nv4(ctx)) )
{
// set up temps for nv2 REP/ENDREP emulation through branching.
for (i = 0; i < ctx->max_reps; i++)
output_line(ctx, "TEMP rep%d;", i);
} // if
pop_output(ctx);
assert(ctx->scratch_registers == ctx->max_scratch_registers);
} // emit_ARB1_finalize
static void emit_ARB1_global(Context *ctx, RegisterType regtype, int regnum)
{
// !!! FIXME: dependency on ARB1 profile. // !!! FIXME about FIXME: huh?
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
switch (regtype)
{
case REG_TYPE_ADDRESS:
if (shader_is_pixel(ctx)) // actually REG_TYPE_TEXTURE.
{
// We have to map texture registers to temps for ps_1_1, since
// they work like temps, initialize with tex coords, and the
// ps_1_1 TEX opcode expects to overwrite it.
if (!shader_version_atleast(ctx, 1, 4))
{
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
push_output(ctx, &ctx->mainline_intro);
output_line(ctx, "MOV %s, fragment.texcoord[%d];",
varname, regnum);
pop_output(ctx);
} // if
break;
} // if
// nv4 replaced address registers with generic int registers.
if (support_nv4(ctx))
output_line(ctx, "INT TEMP %s;", varname);
else
{
// nv2 has four-component address already, but stock arb1 has
// to emulate it in a temporary, and move components to the
// scalar ADDRESS register on demand.
output_line(ctx, "ADDRESS %s;", varname);
if (!support_nv2(ctx))
output_line(ctx, "TEMP addr%d;", regnum);
} // else
break;
//case REG_TYPE_PREDICATE:
// output_line(ctx, "bvec4 %s;", varname);
// break;
case REG_TYPE_TEMP:
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
break;
//case REG_TYPE_LOOP:
// break; // no-op. We declare these in for loops at the moment.
//case REG_TYPE_LABEL:
// break; // no-op. If we see it here, it means we optimized it out.
default:
fail(ctx, "BUG: we used a register we don't know how to define.");
break;
} // switch
pop_output(ctx);
} // emit_ARB1_global
static void emit_ARB1_array(Context *ctx, VariableList *var)
{
// All uniforms are now packed tightly into the program.local array,
// instead of trying to map them to the d3d registers. So this needs to
// map to the next piece of the array we haven't used yet. Thankfully,
// arb1 lets you make a PARAM array that maps to a subset of another
// array; we don't need to do offsets, since myarray[0] can map to
// program.local[5] without any extra math from us.
const int base = var->index;
const int size = var->count;
const int arb1base = ctx->uniform_float4_count +
ctx->uniform_int4_count +
ctx->uniform_bool_count;
char varname[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s[%d] = { program.local[%d..%d] };", varname,
size, arb1base, (arb1base + size) - 1);
pop_output(ctx);
var->emit_position = arb1base;
} // emit_ARB1_array
static void emit_ARB1_const_array(Context *ctx, const ConstantsList *clist,
int base, int size)
{
char varname[64];
get_ARB1_const_array_varname_in_buf(ctx, base, size, varname, sizeof (varname));
int i;
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s[%d] = {", varname, size);
ctx->indent++;
for (i = 0; i < size; i++)
{
while (clist->constant.type != MOJOSHADER_UNIFORM_FLOAT)
clist = clist->next;
assert(clist->constant.index == (base + i));
char val0[32];
char val1[32];
char val2[32];
char val3[32];
floatstr(ctx, val0, sizeof (val0), clist->constant.value.f[0], 1);
floatstr(ctx, val1, sizeof (val1), clist->constant.value.f[1], 1);
floatstr(ctx, val2, sizeof (val2), clist->constant.value.f[2], 1);
floatstr(ctx, val3, sizeof (val3), clist->constant.value.f[3], 1);
output_line(ctx, "{ %s, %s, %s, %s }%s", val0, val1, val2, val3,
(i < (size-1)) ? "," : "");
clist = clist->next;
} // for
ctx->indent--;
output_line(ctx, "};");
pop_output(ctx);
} // emit_ARB1_const_array
static void emit_ARB1_uniform(Context *ctx, RegisterType regtype, int regnum,
const VariableList *var)
{
// We pack these down into the program.local array, so if we only use
// register c439, it'll actually map to program.local[0]. This will
// prevent overflows when we actually have enough resources to run.
const char *arrayname = "program.local";
int index = 0;
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
push_output(ctx, &ctx->globals);
if (var == NULL)
{
// all types share one array (rather, all types convert to float4).
index = ctx->uniform_float4_count + ctx->uniform_int4_count +
ctx->uniform_bool_count;
} // if
else
{
const int arraybase = var->index;
if (var->constant)
{
const int arraysize = var->count;
arrayname = get_ARB1_const_array_varname_in_buf(ctx, arraybase,
arraysize, (char *) alloca(64), 64);
index = (regnum - arraybase);
} // if
else
{
assert(var->emit_position != -1);
index = (regnum - arraybase) + var->emit_position;
} // else
} // else
output_line(ctx, "PARAM %s = %s[%d];", varname, arrayname, index);
pop_output(ctx);
} // emit_ARB1_uniform
static void emit_ARB1_sampler(Context *ctx,int stage,TextureType ttype,int tb)
{
// this is mostly a no-op...you don't predeclare samplers in arb1.
if (tb) // This sampler used a ps_1_1 TEXBEM opcode?
{
const int index = ctx->uniform_float4_count + ctx->uniform_int4_count +
ctx->uniform_bool_count;
char var[64];
get_ARB1_varname_in_buf(ctx, REG_TYPE_SAMPLER, stage, var, sizeof(var));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s_texbem = program.local[%d];", var, index);
output_line(ctx, "PARAM %s_texbeml = program.local[%d];", var, index+1);
pop_output(ctx);
ctx->uniform_float4_count += 2;
} // if
} // emit_ARB1_sampler
// !!! FIXME: a lot of cut-and-paste here from emit_GLSL_attribute().
static void emit_ARB1_attribute(Context *ctx, RegisterType regtype, int regnum,
MOJOSHADER_usage usage, int index, int wmask,
int flags)
{
// !!! FIXME: this function doesn't deal with write masks at all yet!
const char *usage_str = NULL;
const char *arrayleft = "";
const char *arrayright = "";
char index_str[16] = { '\0' };
char varname[64];
get_ARB1_varname_in_buf(ctx, regtype, regnum, varname, sizeof (varname));
//assert((flags & MOD_PP) == 0); // !!! FIXME: is PP allowed?
if (index != 0) // !!! FIXME: a lot of these MUST be zero.
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
if (shader_is_vertex(ctx))
{
// pre-vs3 output registers.
// these don't ever happen in DCL opcodes, I think. Map to vs_3_*
// output registers.
if (!shader_version_atleast(ctx, 3, 0))
{
if (regtype == REG_TYPE_RASTOUT)
{
regtype = REG_TYPE_OUTPUT;
index = regnum;
switch ((const RastOutType) regnum)
{
case RASTOUT_TYPE_POSITION:
usage = MOJOSHADER_USAGE_POSITION;
break;
case RASTOUT_TYPE_FOG:
usage = MOJOSHADER_USAGE_FOG;
break;
case RASTOUT_TYPE_POINT_SIZE:
usage = MOJOSHADER_USAGE_POINTSIZE;
break;
} // switch
} // if
else if (regtype == REG_TYPE_ATTROUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_COLOR;
index = regnum;
} // else if
else if (regtype == REG_TYPE_TEXCRDOUT)
{
regtype = REG_TYPE_OUTPUT;
usage = MOJOSHADER_USAGE_TEXCOORD;
index = regnum;
} // else if
} // if
// to avoid limitations of various GL entry points for input
// attributes (glSecondaryColorPointer() can only take 3 component
// items, glVertexPointer() can't do GL_UNSIGNED_BYTE, many other
// issues), we set up all inputs as generic vertex attributes, so we
// can pass data in just about any form, and ignore the built-in GLSL
// attributes like gl_SecondaryColor. Output needs to use the the
// built-ins, though, but we don't have to worry about the GL entry
// point limitations there.
if (regtype == REG_TYPE_INPUT)
{
const int attr = ctx->assigned_vertex_attributes++;
push_output(ctx, &ctx->globals);
output_line(ctx, "ATTRIB %s = vertex.attrib[%d];", varname, attr);
pop_output(ctx);
} // if
else if (regtype == REG_TYPE_OUTPUT)
{
switch (usage)
{
case MOJOSHADER_USAGE_POSITION:
ctx->arb1_wrote_position = 1;
usage_str = "result.position";
break;
case MOJOSHADER_USAGE_POINTSIZE:
usage_str = "result.pointsize";
break;
case MOJOSHADER_USAGE_COLOR:
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "result.color.primary";
else if (index == 1)
usage_str = "result.color.secondary";
break;
case MOJOSHADER_USAGE_FOG:
usage_str = "result.fogcoord";
break;
case MOJOSHADER_USAGE_TEXCOORD:
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "result.texcoord";
arrayleft = "[";
arrayright = "]";
break;
default:
// !!! FIXME: we need to deal with some more built-in varyings here.
break;
} // switch
// !!! FIXME: the #define is a little hacky, but it means we don't
// !!! FIXME: have to track these separately if this works.
push_output(ctx, &ctx->globals);
// no mapping to built-in var? Just make it a regular global, pray.
if (usage_str == NULL)
output_line(ctx, "%s %s;", arb1_float_temp(ctx), varname);
else
{
output_line(ctx, "OUTPUT %s = %s%s%s%s;", varname, usage_str,
arrayleft, index_str, arrayright);
} // else
pop_output(ctx);
} // else if
else
{
fail(ctx, "unknown vertex shader attribute register");
} // else
} // if
else if (shader_is_pixel(ctx))
{
const char *paramtype_str = "ATTRIB";
// samplers DCLs get handled in emit_ARB1_sampler().
if (flags & MOD_CENTROID)
{
if (!support_nv4(ctx)) // GL_NV_fragment_program4 adds centroid.
{
// !!! FIXME: should we just wing it without centroid here?
failf(ctx, "centroid unsupported in %s profile",
ctx->profile->name);
return;
} // if
paramtype_str = "CENTROID ATTRIB";
} // if
if (regtype == REG_TYPE_COLOROUT)
{
paramtype_str = "OUTPUT";
usage_str = "result.color";
if (ctx->have_multi_color_outputs)
{
// We have to gamble that you have GL_ARB_draw_buffers.
// You probably do at this point if you have a sane setup.
snprintf(index_str, sizeof (index_str), "%u", (uint) regnum);
arrayleft = "[";
arrayright = "]";
} // if
} // if
else if (regtype == REG_TYPE_DEPTHOUT)
{
paramtype_str = "OUTPUT";
usage_str = "result.depth";
} // else if
// !!! FIXME: can you actualy have a texture register with COLOR usage?
else if ((regtype == REG_TYPE_TEXTURE) || (regtype == REG_TYPE_INPUT))
{
if (usage == MOJOSHADER_USAGE_TEXCOORD)
{
// ps_1_1 does a different hack for this attribute.
// Refer to emit_ARB1_global()'s REG_TYPE_TEXTURE code.
if (shader_version_atleast(ctx, 1, 4))
{
snprintf(index_str, sizeof (index_str), "%u", (uint) index);
usage_str = "fragment.texcoord";
arrayleft = "[";
arrayright = "]";
} // if
} // if
else if (usage == MOJOSHADER_USAGE_COLOR)
{
index_str[0] = '\0'; // no explicit number.
if (index == 0)
usage_str = "fragment.color.primary";
else if (index == 1)
usage_str = "fragment.color.secondary";
else
fail(ctx, "unsupported color index");
} // else if
} // else if
else if (regtype == REG_TYPE_MISCTYPE)
{
const MiscTypeType mt = (MiscTypeType) regnum;
if (mt == MISCTYPE_TYPE_FACE)
{
if (support_nv4(ctx)) // FINALLY, a vFace equivalent in nv4!
{
index_str[0] = '\0'; // no explicit number.
usage_str = "fragment.facing";
} // if
else
{
failf(ctx, "vFace unsupported in %s profile",
ctx->profile->name);
} // else
} // if
else if (mt == MISCTYPE_TYPE_POSITION)
{
index_str[0] = '\0'; // no explicit number.
usage_str = "fragment.position"; // !!! FIXME: is this the same coord space as D3D?
} // else if
else
{
fail(ctx, "BUG: unhandled misc register");
} // else
} // else if
else
{
fail(ctx, "unknown pixel shader attribute register");
} // else
if (usage_str != NULL)
{
push_output(ctx, &ctx->globals);
output_line(ctx, "%s %s = %s%s%s%s;", paramtype_str, varname,
usage_str, arrayleft, index_str, arrayright);
pop_output(ctx);
} // if
} // else if
else
{
fail(ctx, "Unknown shader type"); // state machine should catch this.
} // else
} // emit_ARB1_attribute
static void emit_ARB1_RESERVED(Context *ctx) { /* no-op. */ }
static void emit_ARB1_NOP(Context *ctx)
{
// There is no NOP in arb1. Just don't output anything here.
} // emit_ARB1_NOP
EMIT_ARB1_OPCODE_DS_FUNC(MOV)
EMIT_ARB1_OPCODE_DSS_FUNC(ADD)
EMIT_ARB1_OPCODE_DSS_FUNC(SUB)
EMIT_ARB1_OPCODE_DSSS_FUNC(MAD)
EMIT_ARB1_OPCODE_DSS_FUNC(MUL)
EMIT_ARB1_OPCODE_DS_FUNC(RCP)
static void emit_ARB1_RSQ(Context *ctx)
{
// nv4 doesn't force abs() on this, so negative values will generate NaN.
// The spec says you should force the abs() yourself.
if (!support_nv4(ctx))
{
emit_ARB1_opcode_ds(ctx, "RSQ"); // pre-nv4 implies ABS.
return;
} // if
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_NEGATE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "RSQ%s, %s;", dst, src0);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "RSQ%s, %s.x;", dst, buf);
} // else
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_RSQ
EMIT_ARB1_OPCODE_DSS_FUNC(DP3)
EMIT_ARB1_OPCODE_DSS_FUNC(DP4)
EMIT_ARB1_OPCODE_DSS_FUNC(MIN)
EMIT_ARB1_OPCODE_DSS_FUNC(MAX)
EMIT_ARB1_OPCODE_DSS_FUNC(SLT)
EMIT_ARB1_OPCODE_DSS_FUNC(SGE)
static void emit_ARB1_EXP(Context *ctx) { emit_ARB1_opcode_ds(ctx, "EX2"); }
static void arb1_log(Context *ctx, const char *opcode)
{
// !!! FIXME: SRCMOD_NEGATE can be made into SRCMOD_ABS here, too
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "%s%s, %s;", opcode, dst, src0);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "%s%s, %s.x;", opcode, dst, buf);
} // else
emit_ARB1_dest_modifiers(ctx);
} // arb1_log
static void emit_ARB1_LOG(Context *ctx)
{
arb1_log(ctx, "LG2");
} // emit_ARB1_LOG
EMIT_ARB1_OPCODE_DS_FUNC(LIT)
EMIT_ARB1_OPCODE_DSS_FUNC(DST)
static void emit_ARB1_LRP(Context *ctx)
{
if (shader_is_pixel(ctx)) // fragment shaders have a matching LRP opcode.
emit_ARB1_opcode_dsss(ctx, "LRP");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
// LRP is: dest = src2 + src0 * (src1 - src2)
output_line(ctx, "SUB %s, %s, %s;", buf, src1, src2);
output_line(ctx, "MAD%s, %s, %s, %s;", dst, buf, src0, src2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_LRP
EMIT_ARB1_OPCODE_DS_FUNC(FRC)
static void arb1_MxXy(Context *ctx, const int x, const int y)
{
DestArgInfo *dstarg = &ctx->dest_arg;
const int origmask = dstarg->writemask;
char src0[64];
int i;
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
for (i = 0; i < y; i++)
{
char dst[64];
char row[64];
make_ARB1_srcarg_string(ctx, i + 1, row, sizeof (row));
set_dstarg_writemask(dstarg, 1 << i);
make_ARB1_destarg_string(ctx, dst, sizeof (dst));
output_line(ctx, "DP%d%s, %s, %s;", x, dst, src0, row);
} // for
set_dstarg_writemask(dstarg, origmask);
emit_ARB1_dest_modifiers(ctx);
} // arb1_MxXy
static void emit_ARB1_M4X4(Context *ctx) { arb1_MxXy(ctx, 4, 4); }
static void emit_ARB1_M4X3(Context *ctx) { arb1_MxXy(ctx, 4, 3); }
static void emit_ARB1_M3X4(Context *ctx) { arb1_MxXy(ctx, 3, 4); }
static void emit_ARB1_M3X3(Context *ctx) { arb1_MxXy(ctx, 3, 3); }
static void emit_ARB1_M3X2(Context *ctx) { arb1_MxXy(ctx, 3, 2); }
static void emit_ARB1_CALL(Context *ctx)
{
if (!support_nv2(ctx)) // no branching in stock ARB1.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
return;
} // if
char labelstr[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
output_line(ctx, "CAL %s;", labelstr);
} // emit_ARB1_CALL
static void emit_ARB1_CALLNZ(Context *ctx)
{
// !!! FIXME: if src1 is a constbool that's true, we can remove the
// !!! FIXME: if. If it's false, we can make this a no-op.
if (!support_nv2(ctx)) // no branching in stock ARB1.
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
else
{
// !!! FIXME: double-check this.
char labelstr[64];
char scratch[64];
char src1[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "MOVC %s, %s;", scratch, src1);
output_line(ctx, "CAL %s (NE.x);", labelstr);
} // else
} // emit_ARB1_CALLNZ
// !!! FIXME: needs BRA in nv2, LOOP in nv2 fragment progs, and REP in nv4.
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(LOOP)
static void emit_ARB1_RET(Context *ctx)
{
// don't fail() if no nv2...maybe we're just ending the mainline?
// if we're ending a LABEL that had no CALL, this would all be written
// to ctx->ignore anyhow, so this should be "safe" ... arb1 profile will
// just end up throwing all this code out.
if (support_nv2(ctx)) // no branching in stock ARB1.
output_line(ctx, "RET;");
set_output(ctx, &ctx->mainline); // in case we were ignoring this function.
} // emit_ARB1_RET
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(ENDLOOP)
static void emit_ARB1_LABEL(Context *ctx)
{
if (!support_nv2(ctx)) // no branching in stock ARB1.
return; // don't fail()...maybe we never use it, but do fail in CALL.
const int label = ctx->source_args[0].regnum;
RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, label);
// MSDN specs say CALL* has to come before the LABEL, so we know if we
// can ditch the entire function here as unused.
if (reg == NULL)
set_output(ctx, &ctx->ignore); // Func not used. Parse, but don't output.
// !!! FIXME: it would be nice if we could determine if a function is
// !!! FIXME: only called once and, if so, forcibly inline it.
//const char *uses_loopreg = ((reg) && (reg->misc == 1)) ? "int aL" : "";
char labelstr[64];
get_ARB1_srcarg_varname(ctx, 0, labelstr, sizeof (labelstr));
output_line(ctx, "%s:", labelstr);
} // emit_ARB1_LABEL
static void emit_ARB1_POW(Context *ctx)
{
// we can optimize this to use nv2's |abs| construct in some cases.
if ( (ctx->source_args[0].src_mod == SRCMOD_NONE) ||
(ctx->source_args[0].src_mod == SRCMOD_ABSNEGATE) )
ctx->source_args[0].src_mod = SRCMOD_ABS;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
if (ctx->source_args[0].src_mod == SRCMOD_ABS)
output_line(ctx, "POW%s, %s, %s;", dst, src0, src1);
else
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "ABS %s, %s;", buf, src0);
output_line(ctx, "POW%s, %s.x, %s;", dst, buf, src1);
} // else
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_POW
static void emit_ARB1_CRS(Context *ctx) { emit_ARB1_opcode_dss(ctx, "XPD"); }
static void emit_ARB1_SGN(Context *ctx)
{
if (support_nv2(ctx))
emit_ARB1_opcode_ds(ctx, "SSG");
else
{
char dst[64];
char src0[64];
char scratch1[64];
char scratch2[64];
make_ARB1_destarg_string(ctx, dst, sizeof (dst));
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
allocate_ARB1_scratch_reg_name(ctx, scratch1, sizeof (scratch1));
allocate_ARB1_scratch_reg_name(ctx, scratch2, sizeof (scratch2));
output_line(ctx, "SLT %s, %s, 0.0;", scratch1, src0);
output_line(ctx, "SLT %s, -%s, 0.0;", scratch2, src0);
output_line(ctx, "ADD%s -%s, %s;", dst, scratch1, scratch2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_SGN
EMIT_ARB1_OPCODE_DS_FUNC(ABS)
static void emit_ARB1_NRM(Context *ctx)
{
// nv2 fragment programs (and anything nv4) have a real NRM.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
emit_ARB1_opcode_ds(ctx, "NRM");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
output_line(ctx, "DP3 %s.w, %s, %s;", buf, src0, src0);
output_line(ctx, "RSQ %s.w, %s.w;", buf, buf);
output_line(ctx, "MUL%s, %s.w, %s;", dst, buf, src0);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_NRM
static void emit_ARB1_SINCOS(Context *ctx)
{
// we don't care about the temp registers that <= sm2 demands; ignore them.
const int mask = ctx->dest_arg.writemask;
// arb1 fragment programs and everything nv4 have sin/cos/sincos opcodes.
if ((shader_is_pixel(ctx)) || (support_nv4(ctx)))
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (writemask_x(mask))
output_line(ctx, "COS%s, %s;", dst, src0);
else if (writemask_y(mask))
output_line(ctx, "SIN%s, %s;", dst, src0);
else if (writemask_xy(mask))
output_line(ctx, "SCS%s, %s;", dst, src0);
} // if
// nv2+ profiles have sin and cos opcodes.
else if (support_nv2(ctx))
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
if (writemask_x(mask))
output_line(ctx, "COS %s.x, %s;", dst, src0);
else if (writemask_y(mask))
output_line(ctx, "SIN %s.y, %s;", dst, src0);
else if (writemask_xy(mask))
{
output_line(ctx, "SIN %s.x, %s;", dst, src0);
output_line(ctx, "COS %s.y, %s;", dst, src0);
} // else if
} // if
else // big nasty.
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src0[64]; get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
const int need_sin = (writemask_x(mask) || writemask_xy(mask));
const int need_cos = (writemask_y(mask) || writemask_xy(mask));
char scratch[64];
if (need_sin || need_cos)
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
// These sin() and cos() approximations originally found here:
// http://www.devmaster.net/forums/showthread.php?t=5784
//
// const float B = 4.0f / M_PI;
// const float C = -4.0f / (M_PI * M_PI);
// float y = B * x + C * x * fabs(x);
//
// // optional better precision...
// const float P = 0.225f;
// y = P * (y * fabs(y) - y) + y;
//
//
// That first thing can be reduced to:
// const float y = ((1.2732395447351626861510701069801f * x) +
// ((-0.40528473456935108577551785283891f * x) * fabs(x)));
if (need_sin)
{
// !!! FIXME: use SRCMOD_ABS here?
output_line(ctx, "ABS %s.x, %s.x;", dst, src0);
output_line(ctx, "MUL %s.x, %s.x, -0.40528473456935108577551785283891;", dst, dst);
output_line(ctx, "MUL %s.x, %s.x, 1.2732395447351626861510701069801;", scratch, src0);
output_line(ctx, "MAD %s.x, %s.x, %s.x, %s.x;", dst, dst, src0, scratch);
} // if
// cosine is sin(x + M_PI/2), but you have to wrap x to pi:
// if (x+(M_PI/2) > M_PI)
// x -= 2 * M_PI;
//
// which is...
// if (x+(1.57079637050628662109375) > 3.1415927410125732421875)
// x += -6.283185482025146484375;
if (need_cos)
{
output_line(ctx, "ADD %s.x, %s.x, 1.57079637050628662109375;", scratch, src0);
output_line(ctx, "SGE %s.y, %s.x, 3.1415927410125732421875;", scratch, scratch);
output_line(ctx, "MAD %s.x, %s.y, -6.283185482025146484375, %s.x;", scratch, scratch, scratch);
output_line(ctx, "ABS %s.x, %s.x;", dst, src0);
output_line(ctx, "MUL %s.x, %s.x, -0.40528473456935108577551785283891;", dst, dst);
output_line(ctx, "MUL %s.x, %s.x, 1.2732395447351626861510701069801;", scratch, src0);
output_line(ctx, "MAD %s.y, %s.x, %s.x, %s.x;", dst, dst, src0, scratch);
} // if
} // else
// !!! FIXME: might not have done anything. Don't emit if we didn't.
if (!isfail(ctx))
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_SINCOS
static void emit_ARB1_REP(Context *ctx)
{
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
// nv2 fragment programs (and everything nv4) have a real REP.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "REP %s;", src0);
else if (support_nv2(ctx))
{
// no REP, but we can use branches.
char failbranch[32];
char topbranch[32];
const int toplabel = allocate_branch_label(ctx);
const int faillabel = allocate_branch_label(ctx);
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
get_ARB1_branch_label_name(ctx,toplabel,topbranch,sizeof(topbranch));
assert(((size_t) ctx->branch_labels_stack_index) <
STATICARRAYLEN(ctx->branch_labels_stack)-1);
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = toplabel;
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = faillabel;
char scratch[32];
snprintf(scratch, sizeof (scratch), "rep%d", ctx->reps);
output_line(ctx, "MOVC %s.x, %s;", scratch, src0);
output_line(ctx, "BRA %s (LE.x);", failbranch);
output_line(ctx, "%s:", topbranch);
} // else if
else // stock ARB1 has no branching.
{
fail(ctx, "branching unsupported in this profile");
} // else
} // emit_ARB1_REP
static void emit_ARB1_ENDREP(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ENDREP.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ENDREP;");
else if (support_nv2(ctx))
{
// no ENDREP, but we can use branches.
assert(ctx->branch_labels_stack_index >= 2);
char failbranch[32];
char topbranch[32];
const int faillabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
const int toplabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
get_ARB1_branch_label_name(ctx,toplabel,topbranch,sizeof(topbranch));
char scratch[32];
snprintf(scratch, sizeof (scratch), "rep%d", ctx->reps);
output_line(ctx, "SUBC %s.x, %s.x, 1.0;", scratch, scratch);
output_line(ctx, "BRA %s (GT.x);", topbranch);
output_line(ctx, "%s:", failbranch);
} // else if
else // stock ARB1 has no branching.
{
fail(ctx, "branching unsupported in this profile");
} // else
} // emit_ARB1_ENDREP
static void nv2_if(Context *ctx)
{
// The condition code register MUST be set up before this!
// nv2 fragment programs (and everything nv4) have a real IF.
if ( (support_nv4(ctx)) || (shader_is_pixel(ctx)) )
output_line(ctx, "IF EQ.x;");
else
{
// there's no IF construct, but we can use a branch to a label.
char failbranch[32];
const int label = allocate_branch_label(ctx);
get_ARB1_branch_label_name(ctx, label, failbranch, sizeof (failbranch));
assert(((size_t) ctx->branch_labels_stack_index)
< STATICARRAYLEN(ctx->branch_labels_stack));
ctx->branch_labels_stack[ctx->branch_labels_stack_index++] = label;
// !!! FIXME: should this be NE? (EQ would jump to the ELSE for the IF condition, right?).
output_line(ctx, "BRA %s (EQ.x);", failbranch);
} // else
} // nv2_if
static void emit_ARB1_IF(Context *ctx)
{
if (support_nv2(ctx))
{
char buf[64]; allocate_ARB1_scratch_reg_name(ctx, buf, sizeof (buf));
char src0[64]; get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
output_line(ctx, "MOVC %s.x, %s;", buf, src0);
nv2_if(ctx);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_IF
static void emit_ARB1_ELSE(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ELSE.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ELSE;");
else if (support_nv2(ctx))
{
// there's no ELSE construct, but we can use a branch to a label.
assert(ctx->branch_labels_stack_index > 0);
// At the end of the IF block, unconditionally jump to the ENDIF.
const int endlabel = allocate_branch_label(ctx);
char endbranch[32];
get_ARB1_branch_label_name(ctx,endlabel,endbranch,sizeof (endbranch));
output_line(ctx, "BRA %s;", endbranch);
// Now mark the ELSE section with a lable.
const int elselabel = ctx->branch_labels_stack[ctx->branch_labels_stack_index-1];
char elsebranch[32];
get_ARB1_branch_label_name(ctx,elselabel,elsebranch,sizeof(elsebranch));
output_line(ctx, "%s:", elsebranch);
// Replace the ELSE label with the ENDIF on the label stack.
ctx->branch_labels_stack[ctx->branch_labels_stack_index-1] = endlabel;
} // else if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_ELSE
static void emit_ARB1_ENDIF(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real ENDIF.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "ENDIF;");
else if (support_nv2(ctx))
{
// there's no ENDIF construct, but we can use a branch to a label.
assert(ctx->branch_labels_stack_index > 0);
const int endlabel = ctx->branch_labels_stack[--ctx->branch_labels_stack_index];
char endbranch[32];
get_ARB1_branch_label_name(ctx,endlabel,endbranch,sizeof (endbranch));
output_line(ctx, "%s:", endbranch);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_ENDIF
static void emit_ARB1_BREAK(Context *ctx)
{
// nv2 fragment programs (and everything nv4) have a real BREAK.
if ( (support_nv4(ctx)) || ((support_nv2(ctx)) && (shader_is_pixel(ctx))) )
output_line(ctx, "BRK;");
else if (support_nv2(ctx))
{
// no BREAK, but we can use branches.
assert(ctx->branch_labels_stack_index >= 2);
const int faillabel = ctx->branch_labels_stack[ctx->branch_labels_stack_index];
char failbranch[32];
get_ARB1_branch_label_name(ctx,faillabel,failbranch,sizeof(failbranch));
output_line(ctx, "BRA %s;", failbranch);
} // else if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_BREAK
static void emit_ARB1_MOVA(Context *ctx)
{
// nv2 and nv3 can use the ARR opcode.
// But nv4 removed ARR (and ADDRESS registers!). Just ROUND to an INT.
if (support_nv4(ctx))
emit_ARB1_opcode_ds(ctx, "ROUND.S"); // !!! FIXME: don't use a modifier here.
else if ((support_nv2(ctx)) || (support_nv3(ctx)))
emit_ARB1_opcode_ds(ctx, "ARR");
else
{
char src0[64];
char scratch[64];
char addr[32];
make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
snprintf(addr, sizeof (addr), "addr%d", ctx->dest_arg.regnum);
// !!! FIXME: we can optimize this if src_mod is ABS or ABSNEGATE.
// ARL uses floor(), but D3D expects round-to-nearest.
// There is probably a more efficient way to do this.
if (shader_is_pixel(ctx)) // CMP only exists in fragment programs. :/
output_line(ctx, "CMP %s, %s, -1.0, 1.0;", scratch, src0);
else
{
output_line(ctx, "SLT %s, %s, 0.0;", scratch, src0);
output_line(ctx, "MAD %s, %s, -2.0, 1.0;", scratch, scratch);
} // else
output_line(ctx, "ABS %s, %s;", addr, src0);
output_line(ctx, "ADD %s, %s, 0.5;", addr, addr);
output_line(ctx, "FLR %s, %s;", addr, addr);
output_line(ctx, "MUL %s, %s, %s;", addr, addr, scratch);
// we don't handle these right now, since emit_ARB1_dest_modifiers(ctx)
// wants to look at dest_arg, not our temp register.
assert(ctx->dest_arg.result_mod == 0);
assert(ctx->dest_arg.result_shift == 0);
// we assign to the actual address register as needed.
ctx->last_address_reg_component = -1;
} // else
} // emit_ARB1_MOVA
static void emit_ARB1_TEXKILL(Context *ctx)
{
// d3d kills on xyz, arb1 kills on xyzw. Fix the swizzle.
// We just map the x component to w. If it's negative, the fragment
// would discard anyhow, otherwise, it'll pass through okay. This saves
// us a temp register.
char dst[64];
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "KIL %s.xyzx;", dst);
} // emit_ARB1_TEXKILL
static void arb1_texbem(Context *ctx, const int luminance)
{
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char src[64]; get_ARB1_srcarg_varname(ctx, 0, src, sizeof (src));
char tmp[64]; allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
char sampler[64];
get_ARB1_varname_in_buf(ctx, REG_TYPE_SAMPLER, stage,
sampler, sizeof (sampler));
output_line(ctx, "MUL %s, %s_texbem.xzyw, %s.xyxy;", tmp, sampler, src);
output_line(ctx, "ADD %s.xy, %s.xzxx, %s.ywxx;", tmp, tmp, tmp);
output_line(ctx, "ADD %s.xy, %s, %s;", tmp, tmp, dst);
output_line(ctx, "TEX %s, %s, texture[%d], 2D;", dst, tmp, stage);
if (luminance) // TEXBEML, not just TEXBEM?
{
output_line(ctx, "MAD %s, %s.zzzz, %s_texbeml.xxxx, %s_texbeml.yyyy;",
tmp, src, sampler, sampler);
output_line(ctx, "MUL %s, %s, %s;", dst, dst, tmp);
} // if
emit_ARB1_dest_modifiers(ctx);
} // arb1_texbem
static void emit_ARB1_TEXBEM(Context *ctx)
{
arb1_texbem(ctx, 0);
} // emit_ARB1_TEXBEM
static void emit_ARB1_TEXBEML(Context *ctx)
{
arb1_texbem(ctx, 1);
} // emit_ARB1_TEXBEML
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2AR)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2GB)
static void emit_ARB1_TEXM3X2PAD(Context *ctx)
{
// no-op ... work happens in emit_ARB1_TEXM3X2TEX().
} // emit_ARB1_TEXM3X2PAD
static void emit_ARB1_TEXM3X2TEX(Context *ctx)
{
if (ctx->texm3x2pad_src0 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_src0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x2pad_dst0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src2, sizeof (src2));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, dst);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "TEX %s, %s, texture[%d], 2D;", dst, dst, stage);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X2TEX
static void emit_ARB1_TEXM3X3PAD(Context *ctx)
{
// no-op ... work happens in emit_ARB1_TEXM3X3*().
} // emit_ARB1_TEXM3X3PAD
static void emit_ARB1_TEXM3X3TEX(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, dst, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3TEX
static void emit_ARB1_TEXM3X3SPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char src5[64];
char tmp[64];
char tmp2[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
allocate_ARB1_scratch_reg_name(ctx, tmp2, sizeof (tmp2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[1].regnum,
src5, sizeof (src5));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MUL %s, %s, %s;", tmp, dst, dst); // normal * normal
output_line(ctx, "MUL %s, %s, %s;", tmp2, dst, src5); // normal * eyeray
// !!! FIXME: This is goofy. There's got to be a way to do vector-wide
// !!! FIXME: divides or reciprocals...right?
output_line(ctx, "RCP %s.x, %s.x;", tmp2, tmp2);
output_line(ctx, "RCP %s.y, %s.y;", tmp2, tmp2);
output_line(ctx, "RCP %s.z, %s.z;", tmp2, tmp2);
output_line(ctx, "RCP %s.w, %s.w;", tmp2, tmp2);
output_line(ctx, "MUL %s, %s, %s;", tmp, tmp, tmp2);
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };", tmp, tmp);
output_line(ctx, "MAD %s, %s, %s, -%s;", tmp, tmp, dst, src5);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, tmp, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3SPEC
static void emit_ARB1_TEXM3X3VSPEC(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
char tmp[64];
char tmp2[64];
char tmp3[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
const int stage = ctx->dest_arg.regnum;
allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
allocate_ARB1_scratch_reg_name(ctx, tmp2, sizeof (tmp2));
allocate_ARB1_scratch_reg_name(ctx, tmp3, sizeof (tmp3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, stage);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
const char *ttypestr = (ttype == TEXTURE_TYPE_CUBE) ? "CUBE" : "3D";
output_line(ctx, "MOV %s.x, %s.w;", tmp3, src0);
output_line(ctx, "MOV %s.y, %s.w;", tmp3, src2);
output_line(ctx, "MOV %s.z, %s.w;", tmp3, dst);
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MUL %s, %s, %s;", tmp, dst, dst); // normal * normal
output_line(ctx, "MUL %s, %s, %s;", tmp2, dst, tmp3); // normal * eyeray
// !!! FIXME: This is goofy. There's got to be a way to do vector-wide
// !!! FIXME: divides or reciprocals...right?
output_line(ctx, "RCP %s.x, %s.x;", tmp2, tmp2);
output_line(ctx, "RCP %s.y, %s.y;", tmp2, tmp2);
output_line(ctx, "RCP %s.z, %s.z;", tmp2, tmp2);
output_line(ctx, "RCP %s.w, %s.w;", tmp2, tmp2);
output_line(ctx, "MUL %s, %s, %s;", tmp, tmp, tmp2);
output_line(ctx, "MUL %s, %s, { 2.0, 2.0, 2.0, 2.0 };", tmp, tmp);
output_line(ctx, "MAD %s, %s, %s, -%s;", tmp, tmp, dst, tmp3);
output_line(ctx, "TEX %s, %s, texture[%d], %s;", dst, tmp, stage, ttypestr);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3VSPEC
static void emit_ARB1_EXPP(Context *ctx) { emit_ARB1_opcode_ds(ctx, "EX2"); }
static void emit_ARB1_LOGP(Context *ctx) { arb1_log(ctx, "LG2"); }
static void emit_ARB1_CND(Context *ctx)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char tmp[64]; allocate_ARB1_scratch_reg_name(ctx, tmp, sizeof (tmp));
// CND compares against 0.5, but we need to compare against 0.0...
// ...subtract to make up the difference.
output_line(ctx, "SUB %s, %s, { 0.5, 0.5, 0.5, 0.5 };", tmp, src0);
// D3D tests (src0 >= 0.0), but ARB1 tests (src0 < 0.0) ... so just
// switch src1 and src2 to get the same results.
output_line(ctx, "CMP%s, %s, %s, %s;", dst, tmp, src2, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_CND
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXREG2RGB)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3TEX)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXM3X2DEPTH)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDP3)
static void emit_ARB1_TEXM3X3(Context *ctx)
{
if (ctx->texm3x3pad_src1 == -1)
return;
char dst[64];
char src0[64];
char src1[64];
char src2[64];
char src3[64];
char src4[64];
// !!! FIXME: this code counts on the register not having swizzles, etc.
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst0,
src0, sizeof (src0));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src0,
src1, sizeof (src1));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_dst1,
src2, sizeof (src2));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->texm3x3pad_src1,
src3, sizeof (src3));
get_ARB1_varname_in_buf(ctx, REG_TYPE_TEXTURE, ctx->source_args[0].regnum,
src4, sizeof (src4));
get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
output_line(ctx, "DP3 %s.z, %s, %s;", dst, dst, src4);
output_line(ctx, "DP3 %s.x, %s, %s;", dst, src0, src1);
output_line(ctx, "DP3 %s.y, %s, %s;", dst, src2, src3);
output_line(ctx, "MOV %s.w, { 1.0, 1.0, 1.0, 1.0 };", dst);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_TEXM3X3
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXDEPTH)
static void emit_ARB1_CMP(Context *ctx)
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
// D3D tests (src0 >= 0.0), but ARB1 tests (src0 < 0.0) ... so just
// switch src1 and src2 to get the same results.
output_line(ctx, "CMP%s, %s, %s, %s;", dst, src0, src2, src1);
emit_ARB1_dest_modifiers(ctx);
} // emit_ARB1_CMP
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BEM)
static void emit_ARB1_DP2ADD(Context *ctx)
{
if (support_nv4(ctx)) // nv4 has a built-in equivalent to DP2ADD.
emit_ARB1_opcode_dsss(ctx, "DP2A");
else
{
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
char src0[64]; make_ARB1_srcarg_string(ctx, 0, src0, sizeof (src0));
char src1[64]; make_ARB1_srcarg_string(ctx, 1, src1, sizeof (src1));
char src2[64]; make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
char scratch[64];
// DP2ADD is:
// dst = (src0.r * src1.r) + (src0.g * src1.g) + src2.replicate_swiz
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "MUL %s, %s, %s;", scratch, src0, src1);
output_line(ctx, "ADD %s, %s.x, %s.y;", scratch, scratch, scratch);
output_line(ctx, "ADD%s, %s.x, %s;", dst, scratch, src2);
emit_ARB1_dest_modifiers(ctx);
} // else
} // emit_ARB1_DP2ADD
static void emit_ARB1_DSX(Context *ctx)
{
if (support_nv2(ctx)) // nv2 has a built-in equivalent to DSX.
emit_ARB1_opcode_ds(ctx, "DDX");
else
failf(ctx, "DSX unsupported in %s profile", ctx->profile->name);
} // emit_ARB1_DSX
static void emit_ARB1_DSY(Context *ctx)
{
if (support_nv2(ctx)) // nv2 has a built-in equivalent to DSY.
emit_ARB1_opcode_ds(ctx, "DDY");
else
failf(ctx, "DSY unsupported in %s profile", ctx->profile->name);
} // emit_ARB1_DSY
static void arb1_texld(Context *ctx, const char *opcode, const int texldd)
{
// !!! FIXME: Hack: "TEXH" is invalid in nv4. Fix this more cleanly.
if ((ctx->dest_arg.result_mod & MOD_PP) && (support_nv4(ctx)))
ctx->dest_arg.result_mod &= ~MOD_PP;
char dst[64]; make_ARB1_destarg_string(ctx, dst, sizeof (dst));
const int sm1 = !shader_version_atleast(ctx, 1, 4);
const int regnum = sm1 ? ctx->dest_arg.regnum : ctx->source_args[1].regnum;
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER, regnum);
const char *ttype = NULL;
char src0[64];
if (sm1)
get_ARB1_destarg_varname(ctx, src0, sizeof (src0));
else
get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
//char src1[64]; get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1)); // !!! FIXME: SRC_MOD?
char src2[64] = { 0 };
char src3[64] = { 0 };
if (texldd)
{
make_ARB1_srcarg_string(ctx, 2, src2, sizeof (src2));
make_ARB1_srcarg_string(ctx, 3, src3, sizeof (src3));
} // if
// !!! FIXME: this should be in state_TEXLD, not in the arb1/glsl emitters.
if (sreg == NULL)
{
fail(ctx, "TEXLD using undeclared sampler");
return;
} // if
// SM1 only specifies dst, so don't check swizzle there.
if ( !sm1 && (!no_swizzle(ctx->source_args[1].swizzle)) )
{
// !!! FIXME: does this ever actually happen?
fail(ctx, "BUG: can't handle TEXLD with sampler swizzle at the moment");
} // if
switch ((const TextureType) sreg->index)
{
case TEXTURE_TYPE_2D: ttype = "2D"; break; // !!! FIXME: "RECT"?
case TEXTURE_TYPE_CUBE: ttype = "CUBE"; break;
case TEXTURE_TYPE_VOLUME: ttype = "3D"; break;
default: fail(ctx, "unknown texture type"); return;
} // switch
if (texldd)
{
output_line(ctx, "%s%s, %s, %s, %s, texture[%d], %s;", opcode, dst,
src0, src2, src3, regnum, ttype);
} // if
else
{
output_line(ctx, "%s%s, %s, texture[%d], %s;", opcode, dst, src0,
regnum, ttype);
} // else
} // arb1_texld
static void emit_ARB1_TEXLDD(Context *ctx)
{
// With GL_NV_fragment_program2, we can use the TXD opcode.
// In stock arb1, we can settle for a standard texld, which isn't
// perfect, but oh well.
if (support_nv2(ctx))
arb1_texld(ctx, "TXD", 1);
else
arb1_texld(ctx, "TEX", 0);
} // emit_ARB1_TEXLDD
static void emit_ARB1_TEXLDL(Context *ctx)
{
if ((shader_is_vertex(ctx)) && (!support_nv3(ctx)))
{
failf(ctx, "Vertex shader TEXLDL unsupported in %s profile",
ctx->profile->name);
return;
} // if
else if ((shader_is_pixel(ctx)) && (!support_nv2(ctx)))
{
failf(ctx, "Pixel shader TEXLDL unsupported in %s profile",
ctx->profile->name);
return;
} // if
// !!! FIXME: this doesn't map exactly to TEXLDL. Review this.
arb1_texld(ctx, "TXL", 0);
} // emit_ARB1_TEXLDL
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BREAKP)
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(BREAKC)
static void emit_ARB1_IFC(Context *ctx)
{
if (support_nv2(ctx))
{
static const char *comps[] = {
"", "SGTC", "SEQC", "SGEC", "SGTC", "SNEC", "SLEC"
};
if (ctx->instruction_controls >= STATICARRAYLEN(comps))
{
fail(ctx, "unknown comparison control");
return;
} // if
char src0[64];
char src1[64];
char scratch[64];
const char *comp = comps[ctx->instruction_controls];
get_ARB1_srcarg_varname(ctx, 0, src0, sizeof (src0));
get_ARB1_srcarg_varname(ctx, 1, src1, sizeof (src1));
allocate_ARB1_scratch_reg_name(ctx, scratch, sizeof (scratch));
output_line(ctx, "%s %s.x, %s, %s;", comp, scratch, src0, src1);
nv2_if(ctx);
} // if
else // stock ARB1 has no branching.
{
failf(ctx, "branching unsupported in %s profile", ctx->profile->name);
} // else
} // emit_ARB1_IFC
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(SETP)
static void emit_ARB1_DEF(Context *ctx)
{
const float *val = (const float *) ctx->dwords; // !!! FIXME: could be int?
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
char val0[32]; floatstr(ctx, val0, sizeof (val0), val[0], 1);
char val1[32]; floatstr(ctx, val1, sizeof (val1), val[1], 1);
char val2[32]; floatstr(ctx, val2, sizeof (val2), val[2], 1);
char val3[32]; floatstr(ctx, val3, sizeof (val3), val[3], 1);
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = { %s, %s, %s, %s };",
dst, val0, val1, val2, val3);
pop_output(ctx);
} // emit_ARB1_DEF
static void emit_ARB1_DEFI(Context *ctx)
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
const int32 *x = (const int32 *) ctx->dwords;
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = { %d, %d, %d, %d };",
dst, (int) x[0], (int) x[1], (int) x[2], (int) x[3]);
pop_output(ctx);
} // emit_ARB1_DEFI
static void emit_ARB1_DEFB(Context *ctx)
{
char dst[64]; get_ARB1_destarg_varname(ctx, dst, sizeof (dst));
push_output(ctx, &ctx->globals);
output_line(ctx, "PARAM %s = %d;", dst, ctx->dwords[0] ? 1 : 0);
pop_output(ctx);
} // emit_ARB1_DEFB
static void emit_ARB1_DCL(Context *ctx)
{
// no-op. We do this in our emit_attribute() and emit_uniform().
} // emit_ARB1_DCL
EMIT_ARB1_OPCODE_UNIMPLEMENTED_FUNC(TEXCRD)
static void emit_ARB1_TEXLD(Context *ctx)
{
if (!shader_version_atleast(ctx, 1, 4))
{
arb1_texld(ctx, "TEX", 0);
return;
} // if
else if (!shader_version_atleast(ctx, 2, 0))
{
// ps_1_4 is different, too!
fail(ctx, "TEXLD == Shader Model 1.4 unimplemented."); // !!! FIXME
return;
} // if
// !!! FIXME: do texldb and texldp map between OpenGL and D3D correctly?
if (ctx->instruction_controls == CONTROL_TEXLD)
arb1_texld(ctx, "TEX", 0);
else if (ctx->instruction_controls == CONTROL_TEXLDP)
arb1_texld(ctx, "TXP", 0);
else if (ctx->instruction_controls == CONTROL_TEXLDB)
arb1_texld(ctx, "TXB", 0);
} // emit_ARB1_TEXLD
#endif // SUPPORT_PROFILE_ARB1
#if !AT_LEAST_ONE_PROFILE
#error No profiles are supported. Fix your build.
#endif
#define DEFINE_PROFILE(prof) { \
MOJOSHADER_PROFILE_##prof, \
emit_##prof##_start, \
emit_##prof##_end, \
emit_##prof##_phase, \
emit_##prof##_global, \
emit_##prof##_array, \
emit_##prof##_const_array, \
emit_##prof##_uniform, \
emit_##prof##_sampler, \
emit_##prof##_attribute, \
emit_##prof##_finalize, \
get_##prof##_varname, \
get_##prof##_const_array_varname, \
},
static const Profile profiles[] =
{
#if SUPPORT_PROFILE_D3D
DEFINE_PROFILE(D3D)
#endif
#if SUPPORT_PROFILE_BYTECODE
DEFINE_PROFILE(BYTECODE)
#endif
#if SUPPORT_PROFILE_GLSL
DEFINE_PROFILE(GLSL)
#endif
#if SUPPORT_PROFILE_ARB1
DEFINE_PROFILE(ARB1)
#endif
};
#undef DEFINE_PROFILE
// This is for profiles that extend other profiles...
static const struct { const char *from; const char *to; } profileMap[] =
{
{ MOJOSHADER_PROFILE_GLSL120, MOJOSHADER_PROFILE_GLSL },
{ MOJOSHADER_PROFILE_NV2, MOJOSHADER_PROFILE_ARB1 },
{ MOJOSHADER_PROFILE_NV3, MOJOSHADER_PROFILE_ARB1 },
{ MOJOSHADER_PROFILE_NV4, MOJOSHADER_PROFILE_ARB1 },
};
// The PROFILE_EMITTER_* items MUST be in the same order as profiles[]!
#define PROFILE_EMITTERS(op) { \
PROFILE_EMITTER_D3D(op) \
PROFILE_EMITTER_BYTECODE(op) \
PROFILE_EMITTER_GLSL(op) \
PROFILE_EMITTER_ARB1(op) \
}
static int parse_destination_token(Context *ctx, DestArgInfo *info)
{
// !!! FIXME: recheck against the spec for ranges (like RASTOUT values, etc).
if (ctx->tokencount == 0)
{
fail(ctx, "Out of tokens in destination parameter");
return 0;
} // if
const uint32 token = SWAP32(*(ctx->tokens));
const int reserved1 = (int) ((token >> 14) & 0x3); // bits 14 through 15
const int reserved2 = (int) ((token >> 31) & 0x1); // bit 31
info->token = ctx->tokens;
info->regnum = (int) (token & 0x7ff); // bits 0 through 10
info->relative = (int) ((token >> 13) & 0x1); // bit 13
info->orig_writemask = (int) ((token >> 16) & 0xF); // bits 16 through 19
info->result_mod = (int) ((token >> 20) & 0xF); // bits 20 through 23
info->result_shift = (int) ((token >> 24) & 0xF); // bits 24 through 27 abc
info->regtype = (RegisterType) (((token >> 28) & 0x7) | ((token >> 8) & 0x18)); // bits 28-30, 11-12
int writemask;
if (isscalar(ctx, ctx->shader_type, info->regtype, info->regnum))
writemask = 0x1; // just x.
else
writemask = info->orig_writemask;
set_dstarg_writemask(info, writemask); // bits 16 through 19.
// all the REG_TYPE_CONSTx types are the same register type, it's just
// split up so its regnum can be > 2047 in the bytecode. Clean it up.
if (info->regtype == REG_TYPE_CONST2)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 2048;
} // else if
else if (info->regtype == REG_TYPE_CONST3)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 4096;
} // else if
else if (info->regtype == REG_TYPE_CONST4)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 6144;
} // else if
// swallow token for now, for multiple calls in a row.
adjust_token_position(ctx, 1);
if (reserved1 != 0x0)
fail(ctx, "Reserved bit #1 in destination token must be zero");
if (reserved2 != 0x1)
fail(ctx, "Reserved bit #2 in destination token must be one");
if (info->relative)
{
if (!shader_is_vertex(ctx))
fail(ctx, "Relative addressing in non-vertex shader");
if (!shader_version_atleast(ctx, 3, 0))
fail(ctx, "Relative addressing in vertex shader version < 3.0");
if ((!ctx->ctab.have_ctab) && (!ctx->ignores_ctab))
{
// it's hard to do this efficiently without!
fail(ctx, "relative addressing unsupported without a CTAB");
} // if
// !!! FIXME: I don't have a shader that has a relative dest currently.
fail(ctx, "Relative addressing of dest tokens is unsupported");
return 2;
} // if
const int s = info->result_shift;
if (s != 0)
{
if (!shader_is_pixel(ctx))
fail(ctx, "Result shift scale in non-pixel shader");
if (shader_version_atleast(ctx, 2, 0))
fail(ctx, "Result shift scale in pixel shader version >= 2.0");
if ( ! (((s >= 1) && (s <= 3)) || ((s >= 0xD) && (s <= 0xF))) )
fail(ctx, "Result shift scale isn't 1 to 3, or 13 to 15.");
} // if
if (info->result_mod & MOD_PP) // Partial precision (pixel shaders only)
{
if (!shader_is_pixel(ctx))
fail(ctx, "Partial precision result mod in non-pixel shader");
} // if
if (info->result_mod & MOD_CENTROID) // Centroid (pixel shaders only)
{
if (!shader_is_pixel(ctx))
fail(ctx, "Centroid result mod in non-pixel shader");
else if (!ctx->centroid_allowed) // only on DCL opcodes!
fail(ctx, "Centroid modifier not allowed here");
} // if
if ((info->regtype < 0) || (info->regtype > REG_TYPE_MAX))
fail(ctx, "Register type is out of range");
if (!isfail(ctx))
set_used_register(ctx, info->regtype, info->regnum, 1);
return 1;
} // parse_destination_token
static void determine_constants_arrays(Context *ctx)
{
// Only process this stuff once. This is called after all DEF* opcodes
// could have been parsed.
if (ctx->determined_constants_arrays)
return;
ctx->determined_constants_arrays = 1;
if (ctx->constant_count <= 1)
return; // nothing to sort or group.
// Sort the linked list into an array for easier tapdancing...
ConstantsList **array = (ConstantsList **) alloca(sizeof (ConstantsList *) * (ctx->constant_count + 1));
ConstantsList *item = ctx->constants;
int i;
for (i = 0; i < ctx->constant_count; i++)
{
if (item == NULL)
{
fail(ctx, "BUG: mismatched constant list and count");
return;
} // if
array[i] = item;
item = item->next;
} // for
array[ctx->constant_count] = NULL;
// bubble sort ftw.
int sorted;
do
{
sorted = 1;
for (i = 0; i < ctx->constant_count-1; i++)
{
if (array[i]->constant.index > array[i+1]->constant.index)
{
ConstantsList *tmp = array[i];
array[i] = array[i+1];
array[i+1] = tmp;
sorted = 0;
} // if
} // for
} while (!sorted);
// okay, sorted. While we're here, let's redo the linked list in order...
for (i = 0; i < ctx->constant_count; i++)
array[i]->next = array[i+1];
ctx->constants = array[0];
// now figure out the groupings of constants and add to ctx->variables...
int start = -1;
int prev = -1;
int count = 0;
const int hi = ctx->constant_count;
for (i = 0; i <= hi; i++)
{
if (array[i] && (array[i]->constant.type != MOJOSHADER_UNIFORM_FLOAT))
continue; // we only care about REG_TYPE_CONST for array groups.
if (start == -1)
{
prev = start = i; // first REG_TYPE_CONST we've seen. Mark it!
continue;
} // if
// not a match (or last item in the array)...see if we had a
// contiguous set before this point...
if ( (array[i]) && (array[i]->constant.index == (array[prev]->constant.index + 1)) )
count++;
else
{
if (count > 0) // multiple constants in the set?
{
VariableList *var;
var = (VariableList *) Malloc(ctx, sizeof (VariableList));
if (var == NULL)
break;
var->type = MOJOSHADER_UNIFORM_FLOAT;
var->index = array[start]->constant.index;
var->count = (array[prev]->constant.index - var->index) + 1;
var->constant = array[start];
var->used = 0;
var->emit_position = -1;
var->next = ctx->variables;
ctx->variables = var;
} // else
start = i; // set this as new start of sequence.
} // if
prev = i;
} // for
} // determine_constants_arrays
static int adjust_swizzle(const Context *ctx, const RegisterType regtype,
const int regnum, const int swizzle)
{
if (regtype != REG_TYPE_INPUT) // !!! FIXME: maybe lift this later?
return swizzle;
else if (ctx->swizzles_count == 0)
return swizzle;
const RegisterList *reg = reglist_find(&ctx->attributes, regtype, regnum);
if (reg == NULL)
return swizzle;
size_t i;
for (i = 0; i < ctx->swizzles_count; i++)
{
const MOJOSHADER_swizzle *swiz = &ctx->swizzles[i];
if ((swiz->usage == reg->usage) && (swiz->index == reg->index))
{
return ( (((int)(swiz->swizzles[((swizzle >> 0) & 0x3)])) << 0) |
(((int)(swiz->swizzles[((swizzle >> 2) & 0x3)])) << 2) |
(((int)(swiz->swizzles[((swizzle >> 4) & 0x3)])) << 4) |
(((int)(swiz->swizzles[((swizzle >> 6) & 0x3)])) << 6) );
} // if
} // for
return swizzle;
} // adjust_swizzle
static int parse_source_token(Context *ctx, SourceArgInfo *info)
{
int retval = 1;
if (ctx->tokencount == 0)
{
fail(ctx, "Out of tokens in source parameter");
return 0;
} // if
const uint32 token = SWAP32(*(ctx->tokens));
const int reserved1 = (int) ((token >> 14) & 0x3); // bits 14 through 15
const int reserved2 = (int) ((token >> 31) & 0x1); // bit 31
info->token = ctx->tokens;
info->regnum = (int) (token & 0x7ff); // bits 0 through 10
info->relative = (int) ((token >> 13) & 0x1); // bit 13
const int swizzle = (int) ((token >> 16) & 0xFF); // bits 16 through 23
info->src_mod = (SourceMod) ((token >> 24) & 0xF); // bits 24 through 27
info->regtype = (RegisterType) (((token >> 28) & 0x7) | ((token >> 8) & 0x18)); // bits 28-30, 11-12
// all the REG_TYPE_CONSTx types are the same register type, it's just
// split up so its regnum can be > 2047 in the bytecode. Clean it up.
if (info->regtype == REG_TYPE_CONST2)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 2048;
} // else if
else if (info->regtype == REG_TYPE_CONST3)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 4096;
} // else if
else if (info->regtype == REG_TYPE_CONST4)
{
info->regtype = REG_TYPE_CONST;
info->regnum += 6144;
} // else if
info->swizzle = adjust_swizzle(ctx, info->regtype, info->regnum, swizzle);
info->swizzle_x = ((info->swizzle >> 0) & 0x3);
info->swizzle_y = ((info->swizzle >> 2) & 0x3);
info->swizzle_z = ((info->swizzle >> 4) & 0x3);
info->swizzle_w = ((info->swizzle >> 6) & 0x3);
// swallow token for now, for multiple calls in a row.
adjust_token_position(ctx, 1);
if (reserved1 != 0x0)
fail(ctx, "Reserved bits #1 in source token must be zero");
if (reserved2 != 0x1)
fail(ctx, "Reserved bit #2 in source token must be one");
if ((info->relative) && (ctx->tokencount == 0))
{
fail(ctx, "Out of tokens in relative source parameter");
info->relative = 0; // don't try to process it.
} // if
if (info->relative)
{
if ( (shader_is_pixel(ctx)) && (!shader_version_atleast(ctx, 3, 0)) )
fail(ctx, "Relative addressing in pixel shader version < 3.0");
const uint32 reltoken = SWAP32(*(ctx->tokens));
// swallow token for now, for multiple calls in a row.
adjust_token_position(ctx, 1);
const int relswiz = (int) ((reltoken >> 16) & 0xFF);
info->relative_regnum = (int) (reltoken & 0x7ff);
info->relative_regtype = (RegisterType)
(((reltoken >> 28) & 0x7) |
((reltoken >> 8) & 0x18));
if (((reltoken >> 31) & 0x1) == 0)
fail(ctx, "bit #31 in relative address must be set");
if ((reltoken & 0xF00E000) != 0) // usused bits.
fail(ctx, "relative address reserved bit must be zero");
switch (info->relative_regtype)
{
case REG_TYPE_LOOP:
case REG_TYPE_ADDRESS:
break;
default:
fail(ctx, "invalid register for relative address");
break;
} // switch
if (info->relative_regnum != 0) // true for now.
fail(ctx, "invalid register for relative address");
if (!replicate_swizzle(relswiz))
fail(ctx, "relative address needs replicate swizzle");
info->relative_component = (relswiz & 0x3);
if (info->regtype == REG_TYPE_INPUT)
{
if ( (shader_is_pixel(ctx)) || (!shader_version_atleast(ctx, 3, 0)) )
fail(ctx, "relative addressing of input registers not supported in this shader model");
ctx->have_relative_input_registers = 1;
} // if
else if (info->regtype == REG_TYPE_CONST)
{
// figure out what array we're in...
if (!ctx->ignores_ctab)
{
if (!ctx->ctab.have_ctab) // hard to do efficiently without!
fail(ctx, "relative addressing unsupported without a CTAB");
else
{
determine_constants_arrays(ctx);
VariableList *var;
const int reltarget = info->regnum;
for (var = ctx->variables; var != NULL; var = var->next)
{
const int lo = var->index;
if ( (reltarget >= lo) && (reltarget < (lo + var->count)) )
break; // match!
} // for
if (var == NULL)
fail(ctx, "relative addressing of indeterminate array");
else
{
var->used = 1;
info->relative_array = var;
set_used_register(ctx, info->relative_regtype, info->relative_regnum, 0);
} // else
} // else
} // if
} // else if
else
{
fail(ctx, "relative addressing of invalid register");
} // else
retval++;
} // if
switch (info->src_mod)
{
case SRCMOD_NONE:
case SRCMOD_ABSNEGATE:
case SRCMOD_ABS:
case SRCMOD_NEGATE:
break; // okay in any shader model.
// apparently these are only legal in Shader Model 1.x ...
case SRCMOD_BIASNEGATE:
case SRCMOD_BIAS:
case SRCMOD_SIGNNEGATE:
case SRCMOD_SIGN:
case SRCMOD_COMPLEMENT:
case SRCMOD_X2NEGATE:
case SRCMOD_X2:
case SRCMOD_DZ:
case SRCMOD_DW:
if (shader_version_atleast(ctx, 2, 0))
fail(ctx, "illegal source mod for this Shader Model.");
break;
case SRCMOD_NOT: // !!! FIXME: I _think_ this is right...
if (shader_version_atleast(ctx, 2, 0))
{
if (info->regtype != REG_TYPE_PREDICATE)
fail(ctx, "NOT only allowed on predicate register.");
} // if
break;
default:
fail(ctx, "Unknown source modifier");
} // switch
// !!! FIXME: docs say this for sm3 ... check these!
// "The negate modifier cannot be used on second source register of these
// instructions: m3x2 - ps, m3x3 - ps, m3x4 - ps, m4x3 - ps, and
// m4x4 - ps."
// "If any version 3 shader reads from one or more constant float
// registers (c#), one of the following must be true.
// All of the constant floating-point registers must use the abs modifier.
// None of the constant floating-point registers can use the abs modifier.
if (!isfail(ctx))
{
RegisterList *reg;
reg = set_used_register(ctx, info->regtype, info->regnum, 0);
// !!! FIXME: this test passes if you write to the register
// !!! FIXME: in this same instruction, because we parse the
// !!! FIXME: destination token first.
// !!! FIXME: Microsoft's shader validation explicitly checks temp
// !!! FIXME: registers for this...do they check other writable ones?
if ((info->regtype == REG_TYPE_TEMP) && (reg) && (!reg->written))
failf(ctx, "Temp register r%d used uninitialized", info->regnum);
} // if
return retval;
} // parse_source_token
static int parse_predicated_token(Context *ctx)
{
SourceArgInfo *arg = &ctx->predicate_arg;
parse_source_token(ctx, arg);
if (arg->regtype != REG_TYPE_PREDICATE)
fail(ctx, "Predicated instruction but not predicate register!");
if ((arg->src_mod != SRCMOD_NONE) && (arg->src_mod != SRCMOD_NOT))
fail(ctx, "Predicated instruction register is not NONE or NOT");
if ( !no_swizzle(arg->swizzle) && !replicate_swizzle(arg->swizzle) )
fail(ctx, "Predicated instruction register has wrong swizzle");
if (arg->relative) // I'm pretty sure this is illegal...?
fail(ctx, "relative addressing in predicated token");
return 1;
} // parse_predicated_token
static int parse_args_NULL(Context *ctx)
{
return 1;
} // parse_args_NULL
static int parse_args_DEF(Context *ctx)
{
parse_destination_token(ctx, &ctx->dest_arg);
if (ctx->dest_arg.regtype != REG_TYPE_CONST)
fail(ctx, "DEF using non-CONST register");
if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...?
fail(ctx, "relative addressing in DEF");
ctx->dwords[0] = SWAP32(ctx->tokens[0]);
ctx->dwords[1] = SWAP32(ctx->tokens[1]);
ctx->dwords[2] = SWAP32(ctx->tokens[2]);
ctx->dwords[3] = SWAP32(ctx->tokens[3]);
return 6;
} // parse_args_DEF
static int parse_args_DEFI(Context *ctx)
{
parse_destination_token(ctx, &ctx->dest_arg);
if (ctx->dest_arg.regtype != REG_TYPE_CONSTINT)
fail(ctx, "DEFI using non-CONSTING register");
if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...?
fail(ctx, "relative addressing in DEFI");
ctx->dwords[0] = SWAP32(ctx->tokens[0]);
ctx->dwords[1] = SWAP32(ctx->tokens[1]);
ctx->dwords[2] = SWAP32(ctx->tokens[2]);
ctx->dwords[3] = SWAP32(ctx->tokens[3]);
return 6;
} // parse_args_DEFI
static int parse_args_DEFB(Context *ctx)
{
parse_destination_token(ctx, &ctx->dest_arg);
if (ctx->dest_arg.regtype != REG_TYPE_CONSTBOOL)
fail(ctx, "DEFB using non-CONSTBOOL register");
if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...?
fail(ctx, "relative addressing in DEFB");
ctx->dwords[0] = *(ctx->tokens) ? 1 : 0;
return 3;
} // parse_args_DEFB
static int valid_texture_type(const uint32 ttype)
{
switch ((const TextureType) ttype)
{
case TEXTURE_TYPE_2D:
case TEXTURE_TYPE_CUBE:
case TEXTURE_TYPE_VOLUME:
return 1; // it's okay.
} // switch
return 0;
} // valid_texture_type
// !!! FIXME: this function is kind of a mess.
static int parse_args_DCL(Context *ctx)
{
int unsupported = 0;
const uint32 token = SWAP32(*(ctx->tokens));
const int reserved1 = (int) ((token >> 31) & 0x1); // bit 31
uint32 reserved_mask = 0x00000000;
if (reserved1 != 0x1)
fail(ctx, "Bit #31 in DCL token must be one");
ctx->centroid_allowed = 1;
adjust_token_position(ctx, 1);
parse_destination_token(ctx, &ctx->dest_arg);
ctx->centroid_allowed = 0;
if (ctx->dest_arg.result_shift != 0) // I'm pretty sure this is illegal...?
fail(ctx, "shift scale in DCL");
if (ctx->dest_arg.relative) // I'm pretty sure this is illegal...?
fail(ctx, "relative addressing in DCL");
const RegisterType regtype = ctx->dest_arg.regtype;
const int regnum = ctx->dest_arg.regnum;
if ( (shader_is_pixel(ctx)) && (shader_version_atleast(ctx, 3, 0)) )
{
if (regtype == REG_TYPE_INPUT)
{
const uint32 usage = (token & 0xF);
const uint32 index = ((token >> 16) & 0xF);
reserved_mask = 0x7FF0FFE0;
ctx->dwords[0] = usage;
ctx->dwords[1] = index;
} // if
else if (regtype == REG_TYPE_MISCTYPE)
{
const MiscTypeType mt = (MiscTypeType) regnum;
if (mt == MISCTYPE_TYPE_POSITION)
reserved_mask = 0x7FFFFFFF;
else if (mt == MISCTYPE_TYPE_FACE)
{
reserved_mask = 0x7FFFFFFF;
if (!writemask_xyzw(ctx->dest_arg.orig_writemask))
fail(ctx, "DCL face writemask must be full");
if (ctx->dest_arg.result_mod != 0)
fail(ctx, "DCL face result modifier must be zero");
if (ctx->dest_arg.result_shift != 0)
fail(ctx, "DCL face shift scale must be zero");
} // else if
else
{
unsupported = 1;
} // else
ctx->dwords[0] = (uint32) MOJOSHADER_USAGE_UNKNOWN;
ctx->dwords[1] = 0;
} // else if
else if (regtype == REG_TYPE_TEXTURE)
{
const uint32 usage = (token & 0xF);
const uint32 index = ((token >> 16) & 0xF);
if (usage == MOJOSHADER_USAGE_TEXCOORD)
{
if (index > 7)
fail(ctx, "DCL texcoord usage must have 0-7 index");
} // if
else if (usage == MOJOSHADER_USAGE_COLOR)
{
if (index != 0)
fail(ctx, "DCL color usage must have 0 index");
} // else if
else
{
fail(ctx, "Invalid DCL texture usage");
} // else
reserved_mask = 0x7FF0FFE0;
ctx->dwords[0] = usage;
ctx->dwords[1] = index;
} // else if
else if (regtype == REG_TYPE_SAMPLER)
{
const uint32 ttype = ((token >> 27) & 0xF);
if (!valid_texture_type(ttype))
fail(ctx, "unknown sampler texture type");
reserved_mask = 0x7FFFFFF;
ctx->dwords[0] = ttype;
} // else if
else
{
unsupported = 1;
} // else
} // if
else if ( (shader_is_pixel(ctx)) && (shader_version_atleast(ctx, 2, 0)) )
{
if (regtype == REG_TYPE_INPUT)
{
ctx->dwords[0] = (uint32) MOJOSHADER_USAGE_COLOR;
ctx->dwords[1] = regnum;
reserved_mask = 0x7FFFFFFF;
} // if
else if (regtype == REG_TYPE_TEXTURE)
{
ctx->dwords[0] = (uint32) MOJOSHADER_USAGE_TEXCOORD;
ctx->dwords[1] = regnum;
reserved_mask = 0x7FFFFFFF;
} // else if
else if (regtype == REG_TYPE_SAMPLER)
{
const uint32 ttype = ((token >> 27) & 0xF);
if (!valid_texture_type(ttype))
fail(ctx, "unknown sampler texture type");
reserved_mask = 0x7FFFFFF;
ctx->dwords[0] = ttype;
} // else if
else
{
unsupported = 1;
} // else
} // if
else if ( (shader_is_vertex(ctx)) && (shader_version_atleast(ctx, 3, 0)) )
{
if ((regtype == REG_TYPE_INPUT) || (regtype == REG_TYPE_OUTPUT))
{
const uint32 usage = (token & 0xF);
const uint32 index = ((token >> 16) & 0xF);
reserved_mask = 0x7FF0FFE0;
ctx->dwords[0] = usage;
ctx->dwords[1] = index;
} // if
else
{
unsupported = 1;
} // else
} // else if
else if ( (shader_is_vertex(ctx)) && (shader_version_atleast(ctx, 1, 1)) )
{
if (regtype == REG_TYPE_INPUT)
{
const uint32 usage = (token & 0xF);
const uint32 index = ((token >> 16) & 0xF);
reserved_mask = 0x7FF0FFE0;
ctx->dwords[0] = usage;
ctx->dwords[1] = index;
} // if
else
{
unsupported = 1;
} // else
} // else if
else
{
unsupported = 1;
} // else
if (unsupported)
fail(ctx, "invalid DCL register type for this shader model");
if ((token & reserved_mask) != 0)
fail(ctx, "reserved bits in DCL dword aren't zero");
return 3;
} // parse_args_DCL
static int parse_args_D(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx, &ctx->dest_arg);
return retval;
} // parse_args_D
static int parse_args_S(Context *ctx)
{
int retval = 1;
retval += parse_source_token(ctx, &ctx->source_args[0]);
return retval;
} // parse_args_S
static int parse_args_SS(Context *ctx)
{
int retval = 1;
retval += parse_source_token(ctx, &ctx->source_args[0]);
retval += parse_source_token(ctx, &ctx->source_args[1]);
return retval;
} // parse_args_SS
static int parse_args_DS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx, &ctx->dest_arg);
retval += parse_source_token(ctx, &ctx->source_args[0]);
return retval;
} // parse_args_DS
static int parse_args_DSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx, &ctx->dest_arg);
retval += parse_source_token(ctx, &ctx->source_args[0]);
retval += parse_source_token(ctx, &ctx->source_args[1]);
return retval;
} // parse_args_DSS
static int parse_args_DSSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx, &ctx->dest_arg);
retval += parse_source_token(ctx, &ctx->source_args[0]);
retval += parse_source_token(ctx, &ctx->source_args[1]);
retval += parse_source_token(ctx, &ctx->source_args[2]);
return retval;
} // parse_args_DSSS
static int parse_args_DSSSS(Context *ctx)
{
int retval = 1;
retval += parse_destination_token(ctx, &ctx->dest_arg);
retval += parse_source_token(ctx, &ctx->source_args[0]);
retval += parse_source_token(ctx, &ctx->source_args[1]);
retval += parse_source_token(ctx, &ctx->source_args[2]);
retval += parse_source_token(ctx, &ctx->source_args[3]);
return retval;
} // parse_args_DSSSS
static int parse_args_SINCOS(Context *ctx)
{
// this opcode needs extra registers for sm2 and lower.
if (!shader_version_atleast(ctx, 3, 0))
return parse_args_DSSS(ctx);
return parse_args_DS(ctx);
} // parse_args_SINCOS
static int parse_args_TEXCRD(Context *ctx)
{
// added extra register in ps_1_4.
if (shader_version_atleast(ctx, 1, 4))
return parse_args_DS(ctx);
return parse_args_D(ctx);
} // parse_args_TEXCRD
static int parse_args_TEXLD(Context *ctx)
{
// different registers in px_1_3, ps_1_4, and ps_2_0!
if (shader_version_atleast(ctx, 2, 0))
return parse_args_DSS(ctx);
else if (shader_version_atleast(ctx, 1, 4))
return parse_args_DS(ctx);
return parse_args_D(ctx);
} // parse_args_TEXLD
// State machine functions...
static ConstantsList *alloc_constant_listitem(Context *ctx)
{
ConstantsList *item = (ConstantsList *) Malloc(ctx, sizeof (ConstantsList));
if (item == NULL)
return NULL;
memset(&item->constant, '\0', sizeof (MOJOSHADER_constant));
item->next = ctx->constants;
ctx->constants = item;
ctx->constant_count++;
return item;
} // alloc_constant_listitem
static void state_DEF(Context *ctx)
{
const RegisterType regtype = ctx->dest_arg.regtype;
const int regnum = ctx->dest_arg.regnum;
// !!! FIXME: fail if same register is defined twice.
if (ctx->instruction_count != 0)
fail(ctx, "DEF token must come before any instructions");
else if (regtype != REG_TYPE_CONST)
fail(ctx, "DEF token using invalid register");
else
{
ConstantsList *item = alloc_constant_listitem(ctx);
if (item != NULL)
{
item->constant.index = regnum;
item->constant.type = MOJOSHADER_UNIFORM_FLOAT;
memcpy(item->constant.value.f, ctx->dwords,
sizeof (item->constant.value.f));
set_defined_register(ctx, regtype, regnum);
} // if
} // else
} // state_DEF
static void state_DEFI(Context *ctx)
{
const RegisterType regtype = ctx->dest_arg.regtype;
const int regnum = ctx->dest_arg.regnum;
// !!! FIXME: fail if same register is defined twice.
if (ctx->instruction_count != 0)
fail(ctx, "DEFI token must come before any instructions");
else if (regtype != REG_TYPE_CONSTINT)
fail(ctx, "DEFI token using invalid register");
else
{
ConstantsList *item = alloc_constant_listitem(ctx);
if (item != NULL)
{
item->constant.index = regnum;
item->constant.type = MOJOSHADER_UNIFORM_INT;
memcpy(item->constant.value.i, ctx->dwords,
sizeof (item->constant.value.i));
set_defined_register(ctx, regtype, regnum);
} // if
} // else
} // state_DEFI
static void state_DEFB(Context *ctx)
{
const RegisterType regtype = ctx->dest_arg.regtype;
const int regnum = ctx->dest_arg.regnum;
// !!! FIXME: fail if same register is defined twice.
if (ctx->instruction_count != 0)
fail(ctx, "DEFB token must come before any instructions");
else if (regtype != REG_TYPE_CONSTBOOL)
fail(ctx, "DEFB token using invalid register");
else
{
ConstantsList *item = alloc_constant_listitem(ctx);
if (item != NULL)
{
item->constant.index = regnum;
item->constant.type = MOJOSHADER_UNIFORM_BOOL;
item->constant.value.b = ctx->dwords[0] ? 1 : 0;
set_defined_register(ctx, regtype, regnum);
} // if
} // else
} // state_DEFB
static void state_DCL(Context *ctx)
{
const DestArgInfo *arg = &ctx->dest_arg;
const RegisterType regtype = arg->regtype;
const int regnum = arg->regnum;
const int wmask = arg->writemask;
const int mods = arg->result_mod;
// parse_args_DCL() does a lot of state checking before we get here.
// !!! FIXME: apparently vs_3_0 can use sampler registers now.
// !!! FIXME: (but only s0 through s3, not all 16 of them.)
if (ctx->instruction_count != 0)
fail(ctx, "DCL token must come before any instructions");
else if (shader_is_vertex(ctx))
{
const MOJOSHADER_usage usage = (const MOJOSHADER_usage) ctx->dwords[0];
const int index = ctx->dwords[1];
if (usage >= MOJOSHADER_USAGE_TOTAL)
{
fail(ctx, "unknown DCL usage");
return;
} // if
add_attribute_register(ctx, regtype, regnum, usage, index, wmask, mods);
} // if
else if (shader_is_pixel(ctx))
{
if (regtype == REG_TYPE_SAMPLER)
add_sampler(ctx, regnum, (TextureType) ctx->dwords[0], 0);
else
{
const MOJOSHADER_usage usage = (MOJOSHADER_usage) ctx->dwords[0];
const int index = ctx->dwords[1];
add_attribute_register(ctx, regtype, regnum, usage, index, wmask, mods);
} // else
} // else if
else
{
fail(ctx, "unsupported shader type."); // should be caught elsewhere.
return;
} // else
set_defined_register(ctx, regtype, regnum);
} // state_DCL
static void state_TEXCRD(Context *ctx)
{
if (shader_version_atleast(ctx, 2, 0))
fail(ctx, "TEXCRD in Shader Model >= 2.0"); // apparently removed.
} // state_TEXCRD
static void state_FRC(Context *ctx)
{
const DestArgInfo *dst = &ctx->dest_arg;
if (dst->result_mod & MOD_SATURATE) // according to msdn...
fail(ctx, "FRC destination can't use saturate modifier");
else if (!shader_version_atleast(ctx, 2, 0))
{
if (!writemask_y(dst->writemask) && !writemask_xy(dst->writemask))
fail(ctx, "FRC writemask must be .y or .xy for shader model 1.x");
} // else if
} // state_FRC
// replicate the matrix registers to source args. The D3D profile will
// only use the one legitimate argument, but this saves other profiles
// from having to build this.
static void srcarg_matrix_replicate(Context *ctx, const int idx,
const int rows)
{
int i;
SourceArgInfo *src = &ctx->source_args[idx];
SourceArgInfo *dst = &ctx->source_args[idx+1];
for (i = 0; i < (rows-1); i++, dst++)
{
memcpy(dst, src, sizeof (SourceArgInfo));
dst->regnum += (i + 1);
set_used_register(ctx, dst->regtype, dst->regnum, 0);
} // for
} // srcarg_matrix_replicate
static void state_M4X4(Context *ctx)
{
const DestArgInfo *info = &ctx->dest_arg;
if (!writemask_xyzw(info->writemask))
fail(ctx, "M4X4 writemask must be full");
// !!! FIXME: MSDN:
//The xyzw (default) mask is required for the destination register. Negate and swizzle modifiers are allowed for src0, but not for src1.
//Swizzle and negate modifiers are invalid for the src0 register. The dest and src0 registers cannot be the same.
srcarg_matrix_replicate(ctx, 1, 4);
} // state_M4X4
static void state_M4X3(Context *ctx)
{
const DestArgInfo *info = &ctx->dest_arg;
if (!writemask_xyz(info->writemask))
fail(ctx, "M4X3 writemask must be .xyz");
// !!! FIXME: MSDN stuff
srcarg_matrix_replicate(ctx, 1, 3);
} // state_M4X3
static void state_M3X4(Context *ctx)
{
const DestArgInfo *info = &ctx->dest_arg;
if (!writemask_xyzw(info->writemask))
fail(ctx, "M3X4 writemask must be .xyzw");
// !!! FIXME: MSDN stuff
srcarg_matrix_replicate(ctx, 1, 4);
} // state_M3X4
static void state_M3X3(Context *ctx)
{
const DestArgInfo *info = &ctx->dest_arg;
if (!writemask_xyz(info->writemask))
fail(ctx, "M3X3 writemask must be .xyz");
// !!! FIXME: MSDN stuff
srcarg_matrix_replicate(ctx, 1, 3);
} // state_M3X3
static void state_M3X2(Context *ctx)
{
const DestArgInfo *info = &ctx->dest_arg;
if (!writemask_xy(info->writemask))
fail(ctx, "M3X2 writemask must be .xy");
// !!! FIXME: MSDN stuff
srcarg_matrix_replicate(ctx, 1, 2);
} // state_M3X2
static void state_RET(Context *ctx)
{
// MSDN all but says that assembly shaders are more or less serialized
// HLSL functions, and a RET means you're at the end of one, unlike how
// most CPUs would behave. This is actually really helpful,
// since we can use high-level constructs and not a mess of GOTOs,
// which is a godsend for GLSL...this also means we can consider things
// like a LOOP without a matching ENDLOOP within a label's section as
// an error.
if (ctx->loops > 0)
fail(ctx, "LOOP without ENDLOOP");
if (ctx->reps > 0)
fail(ctx, "REP without ENDREP");
} // state_RET
static void check_label_register(Context *ctx, int arg, const char *opcode)
{
const SourceArgInfo *info = &ctx->source_args[arg];
const RegisterType regtype = info->regtype;
const int regnum = info->regnum;
if (regtype != REG_TYPE_LABEL)
failf(ctx, "%s with a non-label register specified", opcode);
if (!shader_version_atleast(ctx, 2, 0))
failf(ctx, "%s not supported in Shader Model 1", opcode);
if ((shader_version_atleast(ctx, 2, 255)) && (regnum > 2047))
fail(ctx, "label register number must be <= 2047");
if (regnum > 15)
fail(ctx, "label register number must be <= 15");
} // check_label_register
static void state_LABEL(Context *ctx)
{
if (ctx->previous_opcode != OPCODE_RET)
fail(ctx, "LABEL not followed by a RET");
check_label_register(ctx, 0, "LABEL");
set_defined_register(ctx, REG_TYPE_LABEL, ctx->source_args[0].regnum);
} // state_LABEL
static void check_call_loop_wrappage(Context *ctx, const int regnum)
{
// msdn says subroutines inherit aL register if you're in a loop when
// you call, and further more _if you ever call this function in a loop,
// it must always be called in a loop_. So we'll just pass our loop
// variable as a function parameter in those cases.
const int current_usage = (ctx->loops > 0) ? 1 : -1;
RegisterList *reg = reglist_find(&ctx->used_registers, REG_TYPE_LABEL, regnum);
assert(reg != NULL);
if (reg->misc == 0)
reg->misc = current_usage;
else if (reg->misc != current_usage)
{
if (current_usage == 1)
fail(ctx, "CALL to this label must be wrapped in LOOP/ENDLOOP");
else
fail(ctx, "CALL to this label must not be wrapped in LOOP/ENDLOOP");
} // else if
} // check_call_loop_wrappage
static void state_CALL(Context *ctx)
{
check_label_register(ctx, 0, "CALL");
check_call_loop_wrappage(ctx, ctx->source_args[0].regnum);
} // state_CALL
static void state_CALLNZ(Context *ctx)
{
const RegisterType regtype = ctx->source_args[1].regtype;
if ((regtype != REG_TYPE_CONSTBOOL) && (regtype != REG_TYPE_PREDICATE))
fail(ctx, "CALLNZ argument isn't constbool or predicate register");
check_label_register(ctx, 0, "CALLNZ");
check_call_loop_wrappage(ctx, ctx->source_args[0].regnum);
} // state_CALLNZ
static void state_MOVA(Context *ctx)
{
if (ctx->dest_arg.regtype != REG_TYPE_ADDRESS)
fail(ctx, "MOVA argument isn't address register");
} // state_MOVA
static void state_RCP(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "RCP without replicate swizzzle");
} // state_RCP
static void state_LOOP(Context *ctx)
{
if (ctx->source_args[0].regtype != REG_TYPE_LOOP)
fail(ctx, "LOOP argument isn't loop register");
else if (ctx->source_args[1].regtype != REG_TYPE_CONSTINT)
fail(ctx, "LOOP argument isn't constint register");
else
ctx->loops++;
} // state_LOOP
static void state_ENDLOOP(Context *ctx)
{
// !!! FIXME: check that we aren't straddling an IF block.
if (ctx->loops <= 0)
fail(ctx, "ENDLOOP without LOOP");
ctx->loops--;
} // state_ENDLOOP
static void state_BREAKP(Context *ctx)
{
const RegisterType regtype = ctx->source_args[0].regtype;
if (regtype != REG_TYPE_PREDICATE)
fail(ctx, "BREAKP argument isn't predicate register");
else if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "BREAKP without replicate swizzzle");
else if ((ctx->loops == 0) && (ctx->reps == 0))
fail(ctx, "BREAKP outside LOOP/ENDLOOP or REP/ENDREP");
} // state_BREAKP
static void state_BREAK(Context *ctx)
{
if ((ctx->loops == 0) && (ctx->reps == 0))
fail(ctx, "BREAK outside LOOP/ENDLOOP or REP/ENDREP");
} // state_BREAK
static void state_SETP(Context *ctx)
{
const RegisterType regtype = ctx->dest_arg.regtype;
if (regtype != REG_TYPE_PREDICATE)
fail(ctx, "SETP argument isn't predicate register");
} // state_SETP
static void state_REP(Context *ctx)
{
const RegisterType regtype = ctx->source_args[0].regtype;
if (regtype != REG_TYPE_CONSTINT)
fail(ctx, "REP argument isn't constint register");
ctx->reps++;
if (ctx->reps > ctx->max_reps)
ctx->max_reps = ctx->reps;
} // state_REP
static void state_ENDREP(Context *ctx)
{
// !!! FIXME: check that we aren't straddling an IF block.
if (ctx->reps <= 0)
fail(ctx, "ENDREP without REP");
ctx->reps--;
} // state_ENDREP
static void state_CMP(Context *ctx)
{
ctx->cmps++;
// extra limitations for ps <= 1.4 ...
if (!shader_version_atleast(ctx, 1, 4))
{
int i;
const DestArgInfo *dst = &ctx->dest_arg;
const RegisterType dregtype = dst->regtype;
const int dregnum = dst->regnum;
if (ctx->cmps > 3)
fail(ctx, "only 3 CMP instructions allowed in this shader model");
for (i = 0; i < 3; i++)
{
const SourceArgInfo *src = &ctx->source_args[i];
const RegisterType sregtype = src->regtype;
const int sregnum = src->regnum;
if ((dregtype == sregtype) && (dregnum == sregnum))
fail(ctx, "CMP dest can't match sources in this shader model");
} // for
ctx->instruction_count++; // takes an extra slot in ps_1_2 and _3.
} // if
} // state_CMP
static void state_DP4(Context *ctx)
{
// extra limitations for ps <= 1.4 ...
if (!shader_version_atleast(ctx, 1, 4))
ctx->instruction_count++; // takes an extra slot in ps_1_2 and _3.
} // state_DP4
static void state_CND(Context *ctx)
{
// apparently it was removed...it's not in the docs past ps_1_4 ...
if (shader_version_atleast(ctx, 2, 0))
fail(ctx, "CND not allowed in this shader model");
// extra limitations for ps <= 1.4 ...
else if (!shader_version_atleast(ctx, 1, 4))
{
const SourceArgInfo *src = &ctx->source_args[0];
if ((src->regtype != REG_TYPE_TEMP) || (src->regnum != 0) ||
(src->swizzle != 0xFF))
{
fail(ctx, "CND src must be r0.a in this shader model");
} // if
} // if
} // state_CND
static void state_POW(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "POW src0 must have replicate swizzle");
else if (!replicate_swizzle(ctx->source_args[1].swizzle))
fail(ctx, "POW src1 must have replicate swizzle");
} // state_POW
static void state_LOG(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "LOG src0 must have replicate swizzle");
} // state_LOG
static void state_LOGP(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "LOGP src0 must have replicate swizzle");
} // state_LOGP
static void state_SINCOS(Context *ctx)
{
const DestArgInfo *dst = &ctx->dest_arg;
const int mask = dst->writemask;
if (!writemask_x(mask) && !writemask_y(mask) && !writemask_xy(mask))
fail(ctx, "SINCOS write mask must be .x or .y or .xy");
else if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "SINCOS src0 must have replicate swizzle");
else if (dst->result_mod & MOD_SATURATE) // according to msdn...
fail(ctx, "SINCOS destination can't use saturate modifier");
// this opcode needs extra registers, with extra limitations, for <= sm2.
else if (!shader_version_atleast(ctx, 3, 0))
{
int i;
for (i = 1; i < 3; i++)
{
if (ctx->source_args[i].regtype != REG_TYPE_CONST)
{
failf(ctx, "SINCOS src%d must be constfloat", i);
return;
} // if
} // for
if (ctx->source_args[1].regnum == ctx->source_args[2].regnum)
fail(ctx, "SINCOS src1 and src2 must be different registers");
} // if
} // state_SINCOS
static void state_IF(Context *ctx)
{
const RegisterType regtype = ctx->source_args[0].regtype;
if ((regtype != REG_TYPE_PREDICATE) && (regtype != REG_TYPE_CONSTBOOL))
fail(ctx, "IF src0 must be CONSTBOOL or PREDICATE");
else if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "IF src0 must have replicate swizzle");
// !!! FIXME: track if nesting depth.
} // state_IF
static void state_IFC(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "IFC src0 must have replicate swizzle");
else if (!replicate_swizzle(ctx->source_args[1].swizzle))
fail(ctx, "IFC src1 must have replicate swizzle");
// !!! FIXME: track if nesting depth.
} // state_IFC
static void state_BREAKC(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[0].swizzle))
fail(ctx, "BREAKC src1 must have replicate swizzle");
else if (!replicate_swizzle(ctx->source_args[1].swizzle))
fail(ctx, "BREAKC src2 must have replicate swizzle");
else if ((ctx->loops == 0) && (ctx->reps == 0))
fail(ctx, "BREAKC outside LOOP/ENDLOOP or REP/ENDREP");
} // state_BREAKC
static void state_TEXKILL(Context *ctx)
{
// The MSDN docs say this should be a source arg, but the driver docs
// say it's a dest arg. That's annoying.
const DestArgInfo *info = &ctx->dest_arg;
const RegisterType regtype = info->regtype;
if (!writemask_xyzw(info->writemask))
fail(ctx, "TEXKILL writemask must be .xyzw");
else if ((regtype != REG_TYPE_TEMP) && (regtype != REG_TYPE_TEXTURE))
fail(ctx, "TEXKILL must use a temp or texture register");
// !!! FIXME: "If a temporary register is used, all components must have been previously written."
// !!! FIXME: "If a texture register is used, all components that are read must have been declared."
// !!! FIXME: there are further limitations in ps_1_3 and earlier.
} // state_TEXKILL
// Some rules that apply to some of the fruity ps_1_1 texture opcodes...
static void state_texops(Context *ctx, const char *opcode,
const int dims, const int texbem)
{
const DestArgInfo *dst = &ctx->dest_arg;
const SourceArgInfo *src = &ctx->source_args[0];
if (dst->regtype != REG_TYPE_TEXTURE)
failf(ctx, "%s destination must be a texture register", opcode);
if (src->regtype != REG_TYPE_TEXTURE)
failf(ctx, "%s source must be a texture register", opcode);
if (src->regnum >= dst->regnum) // so says MSDN.
failf(ctx, "%s dest must be a higher register than source", opcode);
if (dims)
{
TextureType ttyp = (dims == 2) ? TEXTURE_TYPE_2D : TEXTURE_TYPE_CUBE;
add_sampler(ctx, dst->regnum, ttyp, texbem);
} // if
add_attribute_register(ctx, REG_TYPE_TEXTURE, dst->regnum,
MOJOSHADER_USAGE_TEXCOORD, dst->regnum, 0xF, 0);
// Strictly speaking, there should be a TEX opcode prior to this call that
// should fill in this metadata, but I'm not sure that's required for the
// shader to assemble in D3D, so we'll do this so we don't fail with a
// cryptic error message even if the developer didn't do the TEX.
add_attribute_register(ctx, REG_TYPE_TEXTURE, src->regnum,
MOJOSHADER_USAGE_TEXCOORD, src->regnum, 0xF, 0);
} // state_texops
static void state_texbem(Context *ctx, const char *opcode)
{
// The TEXBEM equasion, according to MSDN:
//u' = TextureCoordinates(stage m)u + D3DTSS_BUMPENVMAT00(stage m)*t(n)R
// + D3DTSS_BUMPENVMAT10(stage m)*t(n)G
//v' = TextureCoordinates(stage m)v + D3DTSS_BUMPENVMAT01(stage m)*t(n)R
// + D3DTSS_BUMPENVMAT11(stage m)*t(n)G
//t(m)RGBA = TextureSample(stage m)
//
// ...TEXBEML adds this at the end:
//t(m)RGBA = t(m)RGBA * [(t(n)B * D3DTSS_BUMPENVLSCALE(stage m)) +
// D3DTSS_BUMPENVLOFFSET(stage m)]
if (shader_version_atleast(ctx, 1, 4))
failf(ctx, "%s opcode not available after Shader Model 1.3", opcode);
if (!shader_version_atleast(ctx, 1, 2))
{
if (ctx->source_args[0].src_mod == SRCMOD_SIGN)
failf(ctx, "%s forbids _bx2 on source reg before ps_1_2", opcode);
} // if
// !!! FIXME: MSDN:
// !!! FIXME: Register data that has been read by a texbem
// !!! FIXME: or texbeml instruction cannot be read later,
// !!! FIXME: except by another texbem or texbeml.
state_texops(ctx, opcode, 2, 1);
} // state_texbem
static void state_TEXBEM(Context *ctx)
{
state_texbem(ctx, "TEXBEM");
} // state_TEXBEM
static void state_TEXBEML(Context *ctx)
{
state_texbem(ctx, "TEXBEML");
} // state_TEXBEML
static void state_TEXM3X2PAD(Context *ctx)
{
if (shader_version_atleast(ctx, 1, 4))
fail(ctx, "TEXM3X2PAD opcode not available after Shader Model 1.3");
state_texops(ctx, "TEXM3X2PAD", 0, 0);
// !!! FIXME: check for correct opcode existance and order more rigorously?
ctx->texm3x2pad_src0 = ctx->source_args[0].regnum;
ctx->texm3x2pad_dst0 = ctx->dest_arg.regnum;
} // state_TEXM3X2PAD
static void state_TEXM3X2TEX(Context *ctx)
{
if (shader_version_atleast(ctx, 1, 4))
fail(ctx, "TEXM3X2TEX opcode not available after Shader Model 1.3");
if (ctx->texm3x2pad_dst0 == -1)
fail(ctx, "TEXM3X2TEX opcode without matching TEXM3X2PAD");
// !!! FIXME: check for correct opcode existance and order more rigorously?
state_texops(ctx, "TEXM3X2TEX", 2, 0);
ctx->reset_texmpad = 1;
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
ctx->dest_arg.regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
// A samplermap might change this to something nonsensical.
if (ttype != TEXTURE_TYPE_2D)
fail(ctx, "TEXM3X2TEX needs a 2D sampler");
} // state_TEXM3X2TEX
static void state_TEXM3X3PAD(Context *ctx)
{
if (shader_version_atleast(ctx, 1, 4))
fail(ctx, "TEXM3X2TEX opcode not available after Shader Model 1.3");
state_texops(ctx, "TEXM3X3PAD", 0, 0);
// !!! FIXME: check for correct opcode existance and order more rigorously?
if (ctx->texm3x3pad_dst0 == -1)
{
ctx->texm3x3pad_src0 = ctx->source_args[0].regnum;
ctx->texm3x3pad_dst0 = ctx->dest_arg.regnum;
} // if
else if (ctx->texm3x3pad_dst1 == -1)
{
ctx->texm3x3pad_src1 = ctx->source_args[0].regnum;
ctx->texm3x3pad_dst1 = ctx->dest_arg.regnum;
} // else
} // state_TEXM3X3PAD
static void state_texm3x3(Context *ctx, const char *opcode, const int dims)
{
// !!! FIXME: check for correct opcode existance and order more rigorously?
if (shader_version_atleast(ctx, 1, 4))
failf(ctx, "%s opcode not available after Shader Model 1.3", opcode);
if (ctx->texm3x3pad_dst1 == -1)
failf(ctx, "%s opcode without matching TEXM3X3PADs", opcode);
state_texops(ctx, opcode, dims, 0);
ctx->reset_texmpad = 1;
RegisterList *sreg = reglist_find(&ctx->samplers, REG_TYPE_SAMPLER,
ctx->dest_arg.regnum);
const TextureType ttype = (TextureType) (sreg ? sreg->index : 0);
// A samplermap might change this to something nonsensical.
if ((ttype != TEXTURE_TYPE_VOLUME) && (ttype != TEXTURE_TYPE_CUBE))
failf(ctx, "%s needs a 3D or Cubemap sampler", opcode);
} // state_texm3x3
static void state_TEXM3X3(Context *ctx)
{
if (!shader_version_atleast(ctx, 1, 2))
fail(ctx, "TEXM3X3 opcode not available in Shader Model 1.1");
state_texm3x3(ctx, "TEXM3X3", 0);
} // state_TEXM3X3
static void state_TEXM3X3TEX(Context *ctx)
{
state_texm3x3(ctx, "TEXM3X3TEX", 3);
} // state_TEXM3X3TEX
static void state_TEXM3X3SPEC(Context *ctx)
{
state_texm3x3(ctx, "TEXM3X3SPEC", 3);
if (ctx->source_args[1].regtype != REG_TYPE_CONST)
fail(ctx, "TEXM3X3SPEC final arg must be a constant register");
} // state_TEXM3X3SPEC
static void state_TEXM3X3VSPEC(Context *ctx)
{
state_texm3x3(ctx, "TEXM3X3VSPEC", 3);
} // state_TEXM3X3VSPEC
static void state_TEXLD(Context *ctx)
{
if (shader_version_atleast(ctx, 2, 0))
{
const SourceArgInfo *src0 = &ctx->source_args[0];
const SourceArgInfo *src1 = &ctx->source_args[1];
// !!! FIXME: verify texldp restrictions:
//http://msdn.microsoft.com/en-us/library/bb206221(VS.85).aspx
// !!! FIXME: ...and texldb, too.
//http://msdn.microsoft.com/en-us/library/bb206217(VS.85).aspx
//const RegisterType rt0 = src0->regtype;
// !!! FIXME: msdn says it has to be temp, but Microsoft's HLSL
// !!! FIXME: compiler is generating code that uses oC0 for a dest.
//if (ctx->dest_arg.regtype != REG_TYPE_TEMP)
// fail(ctx, "TEXLD dest must be a temp register");
// !!! FIXME: this can be an REG_TYPE_INPUT, DCL'd to TEXCOORD.
//else if ((rt0 != REG_TYPE_TEXTURE) && (rt0 != REG_TYPE_TEMP))
// fail(ctx, "TEXLD src0 must be texture or temp register");
//else
if (src0->src_mod != SRCMOD_NONE)
fail(ctx, "TEXLD src0 must have no modifiers");
else if (src1->regtype != REG_TYPE_SAMPLER)
fail(ctx, "TEXLD src1 must be sampler register");
else if (src1->src_mod != SRCMOD_NONE)
fail(ctx, "TEXLD src1 must have no modifiers");
else if ( (ctx->instruction_controls != CONTROL_TEXLD) &&
(ctx->instruction_controls != CONTROL_TEXLDP) &&
(ctx->instruction_controls != CONTROL_TEXLDB) )
{
fail(ctx, "TEXLD has unknown control bits");
} // else if
// Shader Model 3 added swizzle support to this opcode.
if (!shader_version_atleast(ctx, 3, 0))
{
if (!no_swizzle(src0->swizzle))
fail(ctx, "TEXLD src0 must not swizzle");
else if (!no_swizzle(src1->swizzle))
fail(ctx, "TEXLD src1 must not swizzle");
} // if
if ( ((TextureType) ctx->source_args[1].regnum) == TEXTURE_TYPE_CUBE )
ctx->instruction_count += 3;
} // if
else if (shader_version_atleast(ctx, 1, 4))
{
// !!! FIXME: checks for ps_1_4 version here...
} // else if
else
{
// !!! FIXME: add (other?) checks for ps_1_1 version here...
const DestArgInfo *info = &ctx->dest_arg;
const int sampler = info->regnum;
if (info->regtype != REG_TYPE_TEXTURE)
fail(ctx, "TEX param must be a texture register");
add_sampler(ctx, sampler, TEXTURE_TYPE_2D, 0);
add_attribute_register(ctx, REG_TYPE_TEXTURE, sampler,
MOJOSHADER_USAGE_TEXCOORD, sampler, 0xF, 0);
} // else
} // state_TEXLD
static void state_TEXLDL(Context *ctx)
{
if (!shader_version_atleast(ctx, 3, 0))
fail(ctx, "TEXLDL in version < Shader Model 3.0");
else if (ctx->source_args[1].regtype != REG_TYPE_SAMPLER)
fail(ctx, "TEXLDL src1 must be sampler register");
else
{
if ( ((TextureType) ctx->source_args[1].regnum) == TEXTURE_TYPE_CUBE )
ctx->instruction_count += 3;
} // else
} // state_TEXLDL
static void state_DP2ADD(Context *ctx)
{
if (!replicate_swizzle(ctx->source_args[2].swizzle))
fail(ctx, "DP2ADD src2 must have replicate swizzle");
} // state_DP2ADD
// Lookup table for instruction opcodes...
typedef struct
{
const char *opcode_string;
int slots; // number of instruction slots this opcode eats.
MOJOSHADER_shaderType shader_types; // mask of types that can use opcode.
args_function parse_args;
state_function state;
emit_function emitter[STATICARRAYLEN(profiles)];
} Instruction;
// These have to be in the right order! This array is indexed by the value
// of the instruction token.
static const Instruction instructions[] =
{
#define INSTRUCTION_STATE(op, opstr, slots, a, t) { \
opstr, slots, t, parse_args_##a, state_##op, PROFILE_EMITTERS(op) \
},
#define INSTRUCTION(op, opstr, slots, a, t) { \
opstr, slots, t, parse_args_##a, 0, PROFILE_EMITTERS(op) \
},
#define MOJOSHADER_DO_INSTRUCTION_TABLE 1
#include "mojoshader_internal.h"
#undef MOJOSHADER_DO_INSTRUCTION_TABLE
#undef INSTRUCTION
#undef INSTRUCTION_STATE
};
// parse various token types...
static int parse_instruction_token(Context *ctx)
{
int retval = 0;
const int start_position = ctx->current_position;
const uint32 *start_tokens = ctx->tokens;
const uint32 start_tokencount = ctx->tokencount;
const uint32 token = SWAP32(*(ctx->tokens));
const uint32 opcode = (token & 0xFFFF);
const uint32 controls = ((token >> 16) & 0xFF);
const uint32 insttoks = ((token >> 24) & 0x0F);
const int coissue = (token & 0x40000000) ? 1 : 0;
const int predicated = (token & 0x10000000) ? 1 : 0;
if ( opcode >= (sizeof (instructions) / sizeof (instructions[0])) )
return 0; // not an instruction token, or just not handled here.
const Instruction *instruction = &instructions[opcode];
const emit_function emitter = instruction->emitter[ctx->profileid];
if ((token & 0x80000000) != 0)
fail(ctx, "instruction token high bit must be zero."); // so says msdn.
if (instruction->opcode_string == NULL)
{
fail(ctx, "Unknown opcode.");
return insttoks + 1; // pray that you resync later.
} // if
ctx->coissue = coissue;
if (coissue)
{
if (!shader_is_pixel(ctx))
fail(ctx, "coissue instruction on non-pixel shader");
if (shader_version_atleast(ctx, 2, 0))
fail(ctx, "coissue instruction in Shader Model >= 2.0");
} // if
if ((ctx->shader_type & instruction->shader_types) == 0)
{
failf(ctx, "opcode '%s' not available in this shader type.",
instruction->opcode_string);
} // if
memset(ctx->dwords, '\0', sizeof (ctx->dwords));
ctx->instruction_controls = controls;
ctx->predicated = predicated;
// Update the context with instruction's arguments.
adjust_token_position(ctx, 1);
retval = instruction->parse_args(ctx);
if (predicated)
retval += parse_predicated_token(ctx);
// parse_args() moves these forward for convenience...reset them.
ctx->tokens = start_tokens;
ctx->tokencount = start_tokencount;
ctx->current_position = start_position;
if (instruction->state != NULL)
instruction->state(ctx);
ctx->instruction_count += instruction->slots;
if (!isfail(ctx))
emitter(ctx); // call the profile's emitter.
if (ctx->reset_texmpad)
{
ctx->texm3x2pad_dst0 = -1;
ctx->texm3x2pad_src0 = -1;
ctx->texm3x3pad_dst0 = -1;
ctx->texm3x3pad_src0 = -1;
ctx->texm3x3pad_dst1 = -1;
ctx->texm3x3pad_src1 = -1;
ctx->reset_texmpad = 0;
} // if
ctx->previous_opcode = opcode;
ctx->scratch_registers = 0; // reset after every instruction.
if (!shader_version_atleast(ctx, 2, 0))
{
if (insttoks != 0) // reserved field in shaders < 2.0 ...
fail(ctx, "instruction token count must be zero");
} // if
else
{
if (((uint32)retval) != (insttoks+1))
{
failf(ctx, "wrong token count (%u, not %u) for opcode '%s'.",
(uint) retval, (uint) (insttoks+1),
instruction->opcode_string);
retval = insttoks + 1; // try to keep sync.
} // if
} // else
return retval;
} // parse_instruction_token
static int parse_version_token(Context *ctx, const char *profilestr)
{
if (ctx->tokencount == 0)
{
fail(ctx, "Expected version token, got none at all.");
return 0;
} // if
const uint32 token = SWAP32(*(ctx->tokens));
const uint32 shadertype = ((token >> 16) & 0xFFFF);
const uint8 major = (uint8) ((token >> 8) & 0xFF);
const uint8 minor = (uint8) (token & 0xFF);
ctx->version_token = token;
// 0xFFFF == pixel shader, 0xFFFE == vertex shader
if (shadertype == 0xFFFF)
{
ctx->shader_type = MOJOSHADER_TYPE_PIXEL;
ctx->shader_type_str = "ps";
} // if
else if (shadertype == 0xFFFE)
{
ctx->shader_type = MOJOSHADER_TYPE_VERTEX;
ctx->shader_type_str = "vs";
} // else if
else // geometry shader? Bogus data?
{
fail(ctx, "Unsupported shader type or not a shader at all");
return -1;
} // else
ctx->major_ver = major;
ctx->minor_ver = minor;
if (!shader_version_supported(major, minor))
{
failf(ctx, "Shader Model %u.%u is currently unsupported.",
(uint) major, (uint) minor);
} // if
if (!isfail(ctx))
ctx->profile->start_emitter(ctx, profilestr);
return 1; // ate one token.
} // parse_version_token
static int parse_ctab_string(const uint8 *start, const uint32 bytes,
const uint32 name)
{
// Make sure strings don't overflow the CTAB buffer...
if (name < bytes)
{
int i;
const int slenmax = bytes - name;
const char *namestr = (const char *) (start + name);
for (i = 0; i < slenmax; i++)
{
if (namestr[i] == '\0')
return 1; // it's okay.
} // for
} // if
return 0; // overflowed.
} // parse_ctab_string
static int parse_ctab_typeinfo(Context *ctx, const uint8 *start,
const uint32 bytes, const uint32 pos,
MOJOSHADER_symbolTypeInfo *info)
{
if ((pos + 16) >= bytes)
return 0; // corrupt CTAB.
const uint16 *typeptr = (const uint16 *) (start + pos);
info->parameter_class = (MOJOSHADER_symbolClass) SWAP16(typeptr[0]);
info->parameter_type = (MOJOSHADER_symbolType) SWAP16(typeptr[1]);
info->rows = (unsigned int) SWAP16(typeptr[2]);
info->columns = (unsigned int) SWAP16(typeptr[3]);
info->elements = (unsigned int) SWAP16(typeptr[4]);
info->member_count = (unsigned int) SWAP16(typeptr[5]);
if ((pos + 16 + (info->member_count * 8)) >= bytes)
return 0; // corrupt CTAB.
if (info->member_count == 0)
info->members = NULL;
else
{
const size_t len = sizeof (MOJOSHADER_symbolStructMember) *
info->member_count;
info->members = (MOJOSHADER_symbolStructMember *) Malloc(ctx, len);
if (info->members == NULL)
return 1; // we'll check ctx->out_of_memory later.
memset(info->members, '\0', len);
} // else
int i;
const uint32 *member = (const uint32 *)((const uint8 *) (&typeptr[6]));
for (i = 0; i < info->member_count; i++)
{
MOJOSHADER_symbolStructMember *mbr = &info->members[i];
const uint32 name = SWAP32(member[0]);
const uint32 memberinfopos = SWAP32(member[1]);
member += 2;
if (!parse_ctab_string(start, bytes, name))
return 0; // info->members will be free()'d elsewhere.
mbr->name = StrDup(ctx, (const char *) (start + name));
if (mbr->name == NULL)
return 1; // we'll check ctx->out_of_memory later.
if (!parse_ctab_typeinfo(ctx, start, bytes, memberinfopos, &mbr->info))
return 0;
if (ctx->out_of_memory)
return 1; // drop out now.
} // for
return 1;
} // parse_ctab_typeinfo
// Microsoft's tools add a CTAB comment to all shaders. This is the
// "constant table," or specifically: D3DXSHADER_CONSTANTTABLE:
// http://msdn.microsoft.com/en-us/library/bb205440(VS.85).aspx
// This may tell us high-level truths about an otherwise generic low-level
// registers, for instance, how large an array actually is, etc.
static void parse_constant_table(Context *ctx, const uint32 *tokens,
const uint32 bytes, const uint32 okay_version,
const int setvariables, CtabData *ctab)
{
const uint32 id = SWAP32(tokens[1]);
if (id != CTAB_ID)
return; // not the constant table.
assert(ctab->have_ctab == 0); // !!! FIXME: can you have more than one?
ctab->have_ctab = 1;
const uint8 *start = (uint8 *) &tokens[2];
if (bytes < 32)
{
fail(ctx, "Truncated CTAB data");
return;
} // if
const uint32 size = SWAP32(tokens[2]);
const uint32 creator = SWAP32(tokens[3]);
const uint32 version = SWAP32(tokens[4]);
const uint32 constants = SWAP32(tokens[5]);
const uint32 constantinfo = SWAP32(tokens[6]);
const uint32 target = SWAP32(tokens[8]);
if (size != CTAB_SIZE)
goto corrupt_ctab;
if (version != okay_version) goto corrupt_ctab;
if (creator >= bytes) goto corrupt_ctab;
if ((constantinfo + (constants * CINFO_SIZE)) >= bytes) goto corrupt_ctab;
if (target >= bytes) goto corrupt_ctab;
if (!parse_ctab_string(start, bytes, target)) goto corrupt_ctab;
// !!! FIXME: check that (start+target) points to "ps_3_0", etc.
ctab->symbol_count = constants;
ctab->symbols = (MOJOSHADER_symbol *)Malloc(ctx, sizeof (MOJOSHADER_symbol) * constants);
if (ctab->symbols == NULL)
return;
memset(ctab->symbols, '\0', sizeof (MOJOSHADER_symbol) * constants);
uint32 i = 0;
for (i = 0; i < constants; i++)
{
const uint8 *ptr = start + constantinfo + (i * CINFO_SIZE);
const uint32 name = SWAP32(*((uint32 *) (ptr + 0)));
const uint16 regset = SWAP16(*((uint16 *) (ptr + 4)));
const uint16 regidx = SWAP16(*((uint16 *) (ptr + 6)));
const uint16 regcnt = SWAP16(*((uint16 *) (ptr + 8)));
const uint32 typeinf = SWAP32(*((uint32 *) (ptr + 12)));
const uint32 defval = SWAP32(*((uint32 *) (ptr + 16)));
MOJOSHADER_uniformType mojotype = MOJOSHADER_UNIFORM_UNKNOWN;
if (!parse_ctab_string(start, bytes, name)) goto corrupt_ctab;
if (defval >= bytes) goto corrupt_ctab;
switch (regset)
{
case 0: mojotype = MOJOSHADER_UNIFORM_BOOL; break;
case 1: mojotype = MOJOSHADER_UNIFORM_INT; break;
case 2: mojotype = MOJOSHADER_UNIFORM_FLOAT; break;
case 3: /* SAMPLER */ break;
default: goto corrupt_ctab;
} // switch
if ((setvariables) && (mojotype != MOJOSHADER_UNIFORM_UNKNOWN))
{
VariableList *item;
item = (VariableList *) Malloc(ctx, sizeof (VariableList));
if (item != NULL)
{
item->type = mojotype;
item->index = regidx;
item->count = regcnt;
item->constant = NULL;
item->used = 0;
item->emit_position = -1;
item->next = ctx->variables;
ctx->variables = item;
} // if
} // if
// Add the symbol.
const char *namecpy = StrDup(ctx, (const char *) (start + name));
if (namecpy == NULL)
return;
MOJOSHADER_symbol *sym = &ctab->symbols[i];
sym->name = namecpy;
sym->register_set = (MOJOSHADER_symbolRegisterSet) regset;
sym->register_index = (unsigned int) regidx;
sym->register_count = (unsigned int) regcnt;
if (!parse_ctab_typeinfo(ctx, start, bytes, typeinf, &sym->info))
goto corrupt_ctab; // sym->name will get free()'d later.
else if (ctx->out_of_memory)
return; // just bail now.
} // for
return;
corrupt_ctab:
fail(ctx, "Shader has corrupt CTAB data");
} // parse_constant_table
static void free_symbols(MOJOSHADER_free f, void *d, MOJOSHADER_symbol *syms,
const int symcount);
static int is_comment_token(Context *ctx, const uint32 tok, uint32 *tokcount)
{
const uint32 token = SWAP32(tok);
if ((token & 0xFFFF) == 0xFFFE) // actually a comment token?
{
if ((token & 0x80000000) != 0)
fail(ctx, "comment token high bit must be zero."); // so says msdn.
*tokcount = ((token >> 16) & 0xFFFF);
return 1;
} // if
return 0;
} // is_comment_token
typedef struct PreshaderBlockInfo
{
const uint32 *tokens;
uint32 tokcount;
int seen;
} PreshaderBlockInfo;
// Preshaders only show up in compiled Effect files. The format is
// undocumented, and even the instructions aren't the same opcodes as you
// would find in a regular shader. These things show up because the HLSL
// compiler can detect work that sets up constant registers that could
// be moved out of the shader itself. Preshaders run once, then the shader
// itself runs many times, using the constant registers the preshader has set
// up. There are cases where the preshaders are 3+ times as many instructions
// as the shader itself, so this can be a big performance win.
// My presumption is that Microsoft's Effects framework runs the preshaders on
// the CPU, then loads the constant register file appropriately before handing
// off to the GPU. As such, we do the same.
static void parse_preshader(Context *ctx, uint32 tokcount)
{
const uint32 *tokens = ctx->tokens;
if ((tokcount < 2) || (SWAP32(tokens[1]) != PRES_ID))
return; // not a preshader.
#if !SUPPORT_PRESHADERS
fail(ctx, "Preshader found, but preshader support is disabled!");
#else
assert(ctx->have_preshader == 0); // !!! FIXME: can you have more than one?
ctx->have_preshader = 1;
// !!! FIXME: I don't know what specific versions signify, but we need to
// !!! FIXME: save this to test against the CTAB version field, if
// !!! FIXME: nothing else.
// !!! FIXME: 0x02 0x01 is probably the version (fx_2_1),
// !!! FIXME: and 0x4658 is the magic, like a real shader's version token.
const uint32 okay_version = 0x46580201;
if (SWAP32(tokens[2]) != okay_version)
{
fail(ctx, "Unsupported preshader version.");
return; // fail because the shader will malfunction w/o this.
} // if
tokens += 3;
tokcount -= 3;
// All sections of a preshader are packed into separate comment tokens,
// inside the containing comment token block. Find them all before
// we start, so we don't care about the order they appear in the file.
PreshaderBlockInfo ctab = { 0, 0, 0 };
PreshaderBlockInfo prsi = { 0, 0, 0 };
PreshaderBlockInfo fxlc = { 0, 0, 0 };
PreshaderBlockInfo clit = { 0, 0, 0 };
while (tokcount > 0)
{
uint32 subtokcount = 0;
if ( (!is_comment_token(ctx, *tokens, &subtokcount)) ||
(subtokcount > tokcount) )
{
fail(ctx, "Bogus preshader data.");
return;
} // if
tokens++;
tokcount--;
const uint32 *nexttokens = tokens + subtokcount;
const uint32 nexttokcount = tokcount - subtokcount;
if (subtokcount > 0)
{
switch (SWAP32(*tokens))
{
#define PRESHADER_BLOCK_CASE(id, var) \
case id##_ID: { \
if (var.seen) { \
fail(ctx, "Multiple " #id " preshader blocks."); \
return; \
} \
var.tokens = tokens; \
var.tokcount = subtokcount; \
var.seen = 1; \
break; \
}
PRESHADER_BLOCK_CASE(CTAB, ctab);
PRESHADER_BLOCK_CASE(PRSI, prsi);
PRESHADER_BLOCK_CASE(FXLC, fxlc);
PRESHADER_BLOCK_CASE(CLIT, clit);
default: fail(ctx, "Bogus preshader section."); return;
#undef PRESHADER_BLOCK_CASE
} // switch
} // if
tokens = nexttokens;
tokcount = nexttokcount;
} // while
if (!ctab.seen) { fail(ctx, "No CTAB block in preshader."); return; }
if (!prsi.seen) { fail(ctx, "No PRSI block in preshader."); return; }
if (!fxlc.seen) { fail(ctx, "No FXLC block in preshader."); return; }
if (!clit.seen) { fail(ctx, "No CLIT block in preshader."); return; }
MOJOSHADER_preshader *preshader = (MOJOSHADER_preshader *)
Malloc(ctx, sizeof (MOJOSHADER_preshader));
if (preshader == NULL)
return;
memset(preshader, '\0', sizeof (MOJOSHADER_preshader));
ctx->preshader = preshader;
// Let's set up the constant literals first...
if (clit.tokcount == 0)
fail(ctx, "Bogus CLIT block in preshader.");
else
{
const uint32 lit_count = SWAP32(clit.tokens[1]);
if (lit_count > ((clit.tokcount - 2) / 2))
{
fail(ctx, "Bogus CLIT block in preshader.");
return;
} // if
else if (lit_count > 0)
{
preshader->literal_count = (unsigned int) lit_count;
assert(sizeof (double) == 8); // just in case.
const size_t len = sizeof (double) * lit_count;
preshader->literals = (double *) Malloc(ctx, len);
if (preshader->literals == NULL)
return; // oh well.
const double *litptr = (const double *) (clit.tokens + 2);
int i;
for (i = 0; i < lit_count; i++)
preshader->literals[i] = SWAPDBL(litptr[i]);
} // else if
} // else
// Parse out the PRSI block. This is used to map the output registers.
if (prsi.tokcount < 8)
{
fail(ctx, "Bogus preshader PRSI data");
return;
} // if
//const uint32 first_output_reg = SWAP32(prsi.tokens[1]);
// !!! FIXME: there are a lot of fields here I don't know about.
// !!! FIXME: maybe [2] and [3] are for int4 and bool registers?
//const uint32 output_reg_count = SWAP32(prsi.tokens[4]);
// !!! FIXME: maybe [5] and [6] are for int4 and bool registers?
const uint32 output_map_count = SWAP32(prsi.tokens[7]);
prsi.tokcount -= 8;
prsi.tokens += 8;
if (prsi.tokcount < ((output_map_count + 1) * 2))
{
fail(ctx, "Bogus preshader PRSI data");
return;
} // if
const uint32 *output_map = prsi.tokens;
// Now we'll figure out the CTAB...
CtabData ctabdata = { 0, 0, 0 };
parse_constant_table(ctx, ctab.tokens - 1, ctab.tokcount * 4,
okay_version, 0, &ctabdata);
// preshader owns this now. Don't free it in this function.
preshader->symbol_count = ctabdata.symbol_count;
preshader->symbols = ctabdata.symbols;
if (!ctabdata.have_ctab)
{
fail(ctx, "Bogus preshader CTAB data");
return;
} // if
// The FXLC block has the actual instructions...
uint32 opcode_count = SWAP32(fxlc.tokens[1]);
size_t len = sizeof (MOJOSHADER_preshaderInstruction) * opcode_count;
preshader->instruction_count = (unsigned int) opcode_count;
preshader->instructions = (MOJOSHADER_preshaderInstruction *)
Malloc(ctx, len);
if (preshader->instructions == NULL)
return;
memset(preshader->instructions, '\0', len);
fxlc.tokens += 2;
fxlc.tokcount -= 2;
if (opcode_count > (fxlc.tokcount / 2))
{
fail(ctx, "Bogus preshader FXLC block.");
return;
} // if
MOJOSHADER_preshaderInstruction *inst = preshader->instructions;
while (opcode_count--)
{
const uint32 opcodetok = SWAP32(fxlc.tokens[0]);
MOJOSHADER_preshaderOpcode opcode = MOJOSHADER_PRESHADEROP_NOP;
switch ((opcodetok >> 16) & 0xFFFF)
{
case 0x1000: opcode = MOJOSHADER_PRESHADEROP_MOV; break;
case 0x1010: opcode = MOJOSHADER_PRESHADEROP_NEG; break;
case 0x1030: opcode = MOJOSHADER_PRESHADEROP_RCP; break;
case 0x1040: opcode = MOJOSHADER_PRESHADEROP_FRC; break;
case 0x1050: opcode = MOJOSHADER_PRESHADEROP_EXP; break;
case 0x1060: opcode = MOJOSHADER_PRESHADEROP_LOG; break;
case 0x1070: opcode = MOJOSHADER_PRESHADEROP_RSQ; break;
case 0x1080: opcode = MOJOSHADER_PRESHADEROP_SIN; break;
case 0x1090: opcode = MOJOSHADER_PRESHADEROP_COS; break;
case 0x10A0: opcode = MOJOSHADER_PRESHADEROP_ASIN; break;
case 0x10B0: opcode = MOJOSHADER_PRESHADEROP_ACOS; break;
case 0x10C0: opcode = MOJOSHADER_PRESHADEROP_ATAN; break;
case 0x2000: opcode = MOJOSHADER_PRESHADEROP_MIN; break;
case 0x2010: opcode = MOJOSHADER_PRESHADEROP_MAX; break;
case 0x2020: opcode = MOJOSHADER_PRESHADEROP_LT; break;
case 0x2030: opcode = MOJOSHADER_PRESHADEROP_GE; break;
case 0x2040: opcode = MOJOSHADER_PRESHADEROP_ADD; break;
case 0x2050: opcode = MOJOSHADER_PRESHADEROP_MUL; break;
case 0x2060: opcode = MOJOSHADER_PRESHADEROP_ATAN2; break;
case 0x2080: opcode = MOJOSHADER_PRESHADEROP_DIV; break;
case 0x3000: opcode = MOJOSHADER_PRESHADEROP_CMP; break;
case 0x3010: opcode = MOJOSHADER_PRESHADEROP_MOVC; break;
case 0x5000: opcode = MOJOSHADER_PRESHADEROP_DOT; break;
case 0x5020: opcode = MOJOSHADER_PRESHADEROP_NOISE; break;
case 0xA000: opcode = MOJOSHADER_PRESHADEROP_MIN_SCALAR; break;
case 0xA010: opcode = MOJOSHADER_PRESHADEROP_MAX_SCALAR; break;
case 0xA020: opcode = MOJOSHADER_PRESHADEROP_LT_SCALAR; break;
case 0xA030: opcode = MOJOSHADER_PRESHADEROP_GE_SCALAR; break;
case 0xA040: opcode = MOJOSHADER_PRESHADEROP_ADD_SCALAR; break;
case 0xA050: opcode = MOJOSHADER_PRESHADEROP_MUL_SCALAR; break;
case 0xA060: opcode = MOJOSHADER_PRESHADEROP_ATAN2_SCALAR; break;
case 0xA080: opcode = MOJOSHADER_PRESHADEROP_DIV_SCALAR; break;
case 0xD000: opcode = MOJOSHADER_PRESHADEROP_DOT_SCALAR; break;
case 0xD020: opcode = MOJOSHADER_PRESHADEROP_NOISE_SCALAR; break;
default: fail(ctx, "Unknown preshader opcode."); break;
} // switch
uint32 operand_count = SWAP32(fxlc.tokens[1]) + 1; // +1 for dest.
inst->opcode = opcode;
inst->element_count = (unsigned int) (opcodetok & 0xFF);
inst->operand_count = (unsigned int) operand_count;
fxlc.tokens += 2;
fxlc.tokcount -= 2;
if ((operand_count * 3) > fxlc.tokcount)
{
fail(ctx, "Bogus preshader FXLC block.");
return;
} // if
MOJOSHADER_preshaderOperand *operand = inst->operands;
while (operand_count--)
{
const unsigned int item = (unsigned int) SWAP32(fxlc.tokens[2]);
// !!! FIXME: don't know what first token does.
switch (SWAP32(fxlc.tokens[1]))
{
case 1: // literal from CLIT block.
{
if (item >= preshader->literal_count)
{
fail(ctx, "Bogus preshader literal index.");
break;
} // if
operand->type = MOJOSHADER_PRESHADEROPERAND_LITERAL;
break;
} // case
case 2: // item from ctabdata.
{
int i;
MOJOSHADER_symbol *sym = ctabdata.symbols;
for (i = 0; i < ctabdata.symbol_count; i++, sym++)
{
const uint32 base = sym->register_index * 4;
const uint32 count = sym->register_count * 4;
assert(sym->register_set==MOJOSHADER_SYMREGSET_FLOAT4);
if ( (base <= item) && ((base + count) > item) )
break;
} // for
if (i == ctabdata.symbol_count)
{
fail(ctx, "Bogus preshader input index.");
break;
} // if
operand->type = MOJOSHADER_PRESHADEROPERAND_INPUT;
break;
} // case
case 4:
{
int i;
for (i = 0; i < output_map_count; i++)
{
const uint32 base = output_map[(i*2)] * 4;
const uint32 count = output_map[(i*2)+1] * 4;
if ( (base <= item) && ((base + count) > item) )
break;
} // for
if (i == output_map_count)
{
fail(ctx, "Bogus preshader output index.");
break;
} // if
operand->type = MOJOSHADER_PRESHADEROPERAND_OUTPUT;
break;
} // case
case 7:
{
operand->type = MOJOSHADER_PRESHADEROPERAND_TEMP;
if (item >= preshader->temp_count)
preshader->temp_count = item + 1;
break;
} // case
} // switch
operand->index = item;
fxlc.tokens += 3;
fxlc.tokcount -= 3;
operand++;
} // while
inst++;
} // while
#endif
} // parse_preshader
static int parse_comment_token(Context *ctx)
{
uint32 commenttoks = 0;
if (is_comment_token(ctx, *ctx->tokens, &commenttoks))
{
if ((commenttoks >= 1) && (commenttoks < ctx->tokencount))
{
const uint32 id = SWAP32(ctx->tokens[1]);
if (id == PRES_ID)
parse_preshader(ctx, commenttoks);
else if (id == CTAB_ID)
{
parse_constant_table(ctx, ctx->tokens, commenttoks * 4,
ctx->version_token, 1, &ctx->ctab);
} // else if
} // if
return commenttoks + 1; // comment data plus the initial token.
} // if
return 0; // not a comment token.
} // parse_comment_token
static int parse_end_token(Context *ctx)
{
if (SWAP32(*(ctx->tokens)) != 0x0000FFFF) // end token always 0x0000FFFF.
return 0; // not us, eat no tokens.
if (ctx->tokencount != 1) // we _must_ be last. If not: fail.
fail(ctx, "end token before end of stream");
if (!isfail(ctx))
ctx->profile->end_emitter(ctx);
return 1;
} // parse_end_token
static int parse_phase_token(Context *ctx)
{
// !!! FIXME: needs state; allow only one phase token per shader, I think?
if (SWAP32(*(ctx->tokens)) != 0x0000FFFD) // phase token always 0x0000FFFD.
return 0; // not us, eat no tokens.
if ( (!shader_is_pixel(ctx)) || (!shader_version_exactly(ctx, 1, 4)) )
fail(ctx, "phase token only available in 1.4 pixel shaders");
if (!isfail(ctx))
ctx->profile->phase_emitter(ctx);
return 1;
} // parse_phase_token
static int parse_token(Context *ctx)
{
int rc = 0;
assert(ctx->output_stack_len == 0);
if (ctx->tokencount == 0)
fail(ctx, "unexpected end of shader.");
else if ((rc = parse_comment_token(ctx)) != 0)
return rc;
else if ((rc = parse_end_token(ctx)) != 0)
return rc;
else if ((rc = parse_phase_token(ctx)) != 0)
return rc;
else if ((rc = parse_instruction_token(ctx)) != 0)
return rc;
failf(ctx, "unknown token (0x%x)", (uint) *ctx->tokens);
return 1; // good luck!
} // parse_token
static int find_profile_id(const char *profile)
{
size_t i;
for (i = 0; i < STATICARRAYLEN(profileMap); i++)
{
const char *name = profileMap[i].from;
if (strcmp(name, profile) == 0)
{
profile = profileMap[i].to;
break;
} // if
} // for
for (i = 0; i < STATICARRAYLEN(profiles); i++)
{
const char *name = profiles[i].name;
if (strcmp(name, profile) == 0)
return i;
} // for
return -1; // no match.
} // find_profile_id
static Context *build_context(const char *profile,
const unsigned char *tokenbuf,
const unsigned int bufsize,
const MOJOSHADER_swizzle *swiz,
const unsigned int swizcount,
const MOJOSHADER_samplerMap *smap,
const unsigned int smapcount,
MOJOSHADER_malloc m, MOJOSHADER_free f, void *d)
{
if (m == NULL) m = MOJOSHADER_internal_malloc;
if (f == NULL) f = MOJOSHADER_internal_free;
Context *ctx = (Context *) m(sizeof (Context), d);
if (ctx == NULL)
return NULL;
memset(ctx, '\0', sizeof (Context));
ctx->malloc = m;
ctx->free = f;
ctx->malloc_data = d;
ctx->tokens = (const uint32 *) tokenbuf;
ctx->orig_tokens = (const uint32 *) tokenbuf;
ctx->tokencount = bufsize / sizeof (uint32);
ctx->swizzles = swiz;
ctx->swizzles_count = swizcount;
ctx->samplermap = smap;
ctx->samplermap_count = smapcount;
ctx->endline = ENDLINE_STR;
ctx->endline_len = strlen(ctx->endline);
ctx->last_address_reg_component = -1;
ctx->current_position = MOJOSHADER_POSITION_BEFORE;
ctx->texm3x2pad_dst0 = -1;
ctx->texm3x2pad_src0 = -1;
ctx->texm3x3pad_dst0 = -1;
ctx->texm3x3pad_src0 = -1;
ctx->texm3x3pad_dst1 = -1;
ctx->texm3x3pad_src1 = -1;
ctx->errors = errorlist_create(MallocBridge, FreeBridge, ctx);
if (ctx->errors == NULL)
{
f(ctx, d);
return NULL;
} // if
if (!set_output(ctx, &ctx->mainline))
{
errorlist_destroy(ctx->errors);
f(ctx, d);
return NULL;
} // if
const int profileid = find_profile_id(profile);
ctx->profileid = profileid;
if (profileid >= 0)
ctx->profile = &profiles[profileid];
else
failf(ctx, "Profile '%s' is unknown or unsupported", profile);
return ctx;
} // build_context
static void free_constants_list(MOJOSHADER_free f, void *d, ConstantsList *item)
{
while (item != NULL)
{
ConstantsList *next = item->next;
f(item, d);
item = next;
} // while
} // free_constants_list
static void free_variable_list(MOJOSHADER_free f, void *d, VariableList *item)
{
while (item != NULL)
{
VariableList *next = item->next;
f(item, d);
item = next;
} // while
} // free_variable_list
static void free_sym_typeinfo(MOJOSHADER_free f, void *d,
MOJOSHADER_symbolTypeInfo *typeinfo)
{
int i;
for (i = 0; i < typeinfo->member_count; i++)
{
f((void *) typeinfo->members[i].name, d);
free_sym_typeinfo(f, d, &typeinfo->members[i].info);
} // for
f((void *) typeinfo->members, d);
} // free_sym_members
static void free_symbols(MOJOSHADER_free f, void *d, MOJOSHADER_symbol *syms,
const int symcount)
{
int i;
for (i = 0; i < symcount; i++)
{
f((void *) syms[i].name, d);
free_sym_typeinfo(f, d, &syms[i].info);
} // for
f((void *) syms, d);
} // free_symbols
static void free_preshader(MOJOSHADER_free f, void *d,
MOJOSHADER_preshader *preshader)
{
if (preshader != NULL)
{
f((void *) preshader->literals, d);
f((void *) preshader->instructions, d);
free_symbols(f, d, preshader->symbols, preshader->symbol_count);
f((void *) preshader, d);
} // if
} // free_preshader
static void destroy_context(Context *ctx)
{
if (ctx != NULL)
{
MOJOSHADER_free f = ((ctx->free != NULL) ? ctx->free : MOJOSHADER_internal_free);
void *d = ctx->malloc_data;
buffer_destroy(ctx->preflight);
buffer_destroy(ctx->globals);
buffer_destroy(ctx->helpers);
buffer_destroy(ctx->subroutines);
buffer_destroy(ctx->mainline_intro);
buffer_destroy(ctx->mainline);
buffer_destroy(ctx->ignore);
free_constants_list(f, d, ctx->constants);
free_reglist(f, d, ctx->used_registers.next);
free_reglist(f, d, ctx->defined_registers.next);
free_reglist(f, d, ctx->uniforms.next);
free_reglist(f, d, ctx->attributes.next);
free_reglist(f, d, ctx->samplers.next);
free_variable_list(f, d, ctx->variables);
errorlist_destroy(ctx->errors);
free_symbols(f, d, ctx->ctab.symbols, ctx->ctab.symbol_count);
free_preshader(f, d, ctx->preshader);
f(ctx, d);
} // if
} // destroy_context
static char *build_output(Context *ctx, size_t *len)
{
// add a byte for a null terminator.
Buffer *buffers[] = {
ctx->preflight, ctx->globals, ctx->helpers,
ctx->subroutines, ctx->mainline_intro, ctx->mainline
// don't append ctx->ignore ... that's why it's called "ignore"
};
char *retval = buffer_merge(buffers, STATICARRAYLEN(buffers), len);
return retval;
} // build_output
static inline const char *alloc_varname(Context *ctx, const RegisterList *reg)
{
return ctx->profile->get_varname(ctx, reg->regtype, reg->regnum);
} // alloc_varname
// !!! FIXME: this code is sort of hard to follow:
// !!! FIXME: "var->used" only applies to arrays (at the moment, at least,
// !!! FIXME: but this might be buggy at a later time?), and this code
// !!! FIXME: relies on that.
// !!! FIXME: "variables" means "things we found in a CTAB" but it's not
// !!! FIXME: all registers, etc.
// !!! FIXME: "const_array" means an array for d3d "const" registers (c0, c1,
// !!! FIXME: etc), but not a constant array, although they _can_ be.
// !!! FIXME: It's just a mess. :/
static MOJOSHADER_uniform *build_uniforms(Context *ctx)
{
const size_t len = sizeof (MOJOSHADER_uniform) * ctx->uniform_count;
MOJOSHADER_uniform *retval = (MOJOSHADER_uniform *) Malloc(ctx, len);
if (retval != NULL)
{
MOJOSHADER_uniform *wptr = retval;
memset(wptr, '\0', len);
VariableList *var;
int written = 0;
for (var = ctx->variables; var != NULL; var = var->next)
{
if (var->used)
{
const char *name = ctx->profile->get_const_array_varname(ctx,
var->index, var->count);
if (name != NULL)
{
wptr->type = MOJOSHADER_UNIFORM_FLOAT;
wptr->index = var->index;
wptr->array_count = var->count;
wptr->constant = (var->constant != NULL) ? 1 : 0;
wptr->name = name;
wptr++;
written++;
} // if
} // if
} // for
RegisterList *item = ctx->uniforms.next;
MOJOSHADER_uniformType type = MOJOSHADER_UNIFORM_FLOAT;
while (written < ctx->uniform_count)
{
int skip = 0;
// !!! FIXME: does this fail if written > ctx->uniform_count?
if (item == NULL)
{
fail(ctx, "BUG: mismatched uniform list and count");
break;
} // if
int index = item->regnum;
switch (item->regtype)
{
case REG_TYPE_CONST:
skip = (item->array != NULL);
type = MOJOSHADER_UNIFORM_FLOAT;
break;
case REG_TYPE_CONSTINT:
type = MOJOSHADER_UNIFORM_INT;
break;
case REG_TYPE_CONSTBOOL:
type = MOJOSHADER_UNIFORM_BOOL;
break;
default:
fail(ctx, "unknown uniform datatype");
break;
} // switch
if (!skip)
{
wptr->type = type;
wptr->index = index;
wptr->array_count = 0;
wptr->name = alloc_varname(ctx, item);
wptr++;
written++;
} // if
item = item->next;
} // for
} // if
return retval;
} // build_uniforms
static MOJOSHADER_constant *build_constants(Context *ctx)
{
const size_t len = sizeof (MOJOSHADER_constant) * ctx->constant_count;
MOJOSHADER_constant *retval = (MOJOSHADER_constant *) Malloc(ctx, len);
if (retval != NULL)
{
ConstantsList *item = ctx->constants;
int i;
for (i = 0; i < ctx->constant_count; i++)
{
if (item == NULL)
{
fail(ctx, "BUG: mismatched constant list and count");
break;
} // if
memcpy(&retval[i], &item->constant, sizeof (MOJOSHADER_constant));
item = item->next;
} // for
} // if
return retval;
} // build_constants
static MOJOSHADER_sampler *build_samplers(Context *ctx)
{
const size_t len = sizeof (MOJOSHADER_sampler) * ctx->sampler_count;
MOJOSHADER_sampler *retval = (MOJOSHADER_sampler *) Malloc(ctx, len);
if (retval != NULL)
{
RegisterList *item = ctx->samplers.next;
int i;
memset(retval, '\0', len);
for (i = 0; i < ctx->sampler_count; i++)
{
if (item == NULL)
{
fail(ctx, "BUG: mismatched sampler list and count");
break;
} // if
assert(item->regtype == REG_TYPE_SAMPLER);
retval[i].type = cvtD3DToMojoSamplerType((TextureType) item->index);
retval[i].index = item->regnum;
retval[i].name = alloc_varname(ctx, item);
retval[i].texbem = (item->misc != 0) ? 1 : 0;
item = item->next;
} // for
} // if
return retval;
} // build_samplers
static MOJOSHADER_attribute *build_attributes(Context *ctx, int *_count)
{
int count = 0;
if (ctx->attribute_count == 0)
{
*_count = 0;
return NULL; // nothing to do.
} // if
const size_t len = sizeof (MOJOSHADER_attribute) * ctx->attribute_count;
MOJOSHADER_attribute *retval = (MOJOSHADER_attribute *) Malloc(ctx, len);
if (retval != NULL)
{
RegisterList *item = ctx->attributes.next;
MOJOSHADER_attribute *wptr = retval;
int ignore = 0;
int i;
memset(retval, '\0', len);
for (i = 0; i < ctx->attribute_count; i++)
{
if (item == NULL)
{
fail(ctx, "BUG: mismatched attribute list and count");
break;
} // if
switch (item->regtype)
{
case REG_TYPE_RASTOUT:
case REG_TYPE_ATTROUT:
case REG_TYPE_TEXCRDOUT:
case REG_TYPE_COLOROUT:
case REG_TYPE_DEPTHOUT:
ignore = 1;
break;
case REG_TYPE_TEXTURE:
case REG_TYPE_MISCTYPE:
case REG_TYPE_INPUT:
ignore = shader_is_pixel(ctx);
break;
default:
ignore = 0;
break;
} // switch
if (!ignore)
{
if (shader_is_pixel(ctx))
fail(ctx, "BUG: pixel shader with vertex attributes");
else
{
wptr->usage = item->usage;
wptr->index = item->index;
wptr->name = alloc_varname(ctx, item);
wptr++;
count++;
} // else
} // if
item = item->next;
} // for
} // if
*_count = count;
return retval;
} // build_attributes
static MOJOSHADER_attribute *build_outputs(Context *ctx, int *_count)
{
int count = 0;
if (ctx->attribute_count == 0)
{
*_count = 0;
return NULL; // nothing to do.
} // if
const size_t len = sizeof (MOJOSHADER_attribute) * ctx->attribute_count;
MOJOSHADER_attribute *retval = (MOJOSHADER_attribute *) Malloc(ctx, len);
if (retval != NULL)
{
RegisterList *item = ctx->attributes.next;
MOJOSHADER_attribute *wptr = retval;
int i;
memset(retval, '\0', len);
for (i = 0; i < ctx->attribute_count; i++)
{
if (item == NULL)
{
fail(ctx, "BUG: mismatched attribute list and count");
break;
} // if
switch (item->regtype)
{
case REG_TYPE_RASTOUT:
case REG_TYPE_ATTROUT:
case REG_TYPE_TEXCRDOUT:
case REG_TYPE_COLOROUT:
case REG_TYPE_DEPTHOUT:
wptr->usage = item->usage;
wptr->index = item->index;
wptr->name = alloc_varname(ctx, item);
wptr++;
count++;
break;
default:
break;
} // switch
item = item->next;
} // for
} // if
*_count = count;
return retval;
} // build_outputs
static MOJOSHADER_parseData *build_parsedata(Context *ctx)
{
char *output = NULL;
MOJOSHADER_constant *constants = NULL;
MOJOSHADER_uniform *uniforms = NULL;
MOJOSHADER_attribute *attributes = NULL;
MOJOSHADER_attribute *outputs = NULL;
MOJOSHADER_sampler *samplers = NULL;
MOJOSHADER_swizzle *swizzles = NULL;
MOJOSHADER_error *errors = NULL;
MOJOSHADER_parseData *retval = NULL;
size_t output_len = 0;
int attribute_count = 0;
int output_count = 0;
if (ctx->out_of_memory)
return &MOJOSHADER_out_of_mem_data;
retval = (MOJOSHADER_parseData*) Malloc(ctx, sizeof(MOJOSHADER_parseData));
if (retval == NULL)
return &MOJOSHADER_out_of_mem_data;
memset(retval, '\0', sizeof (MOJOSHADER_parseData));
if (!isfail(ctx))
output = build_output(ctx, &output_len);
if (!isfail(ctx))
constants = build_constants(ctx);
if (!isfail(ctx))
uniforms = build_uniforms(ctx);
if (!isfail(ctx))
attributes = build_attributes(ctx, &attribute_count);
if (!isfail(ctx))
outputs = build_outputs(ctx, &output_count);
if (!isfail(ctx))
samplers = build_samplers(ctx);
const int error_count = errorlist_count(ctx->errors);
errors = errorlist_flatten(ctx->errors);
if (!isfail(ctx))
{
if (ctx->swizzles_count > 0)
{
const int len = ctx->swizzles_count * sizeof (MOJOSHADER_swizzle);
swizzles = (MOJOSHADER_swizzle *) Malloc(ctx, len);
if (swizzles != NULL)
memcpy(swizzles, ctx->swizzles, len);
} // if
} // if
// check again, in case build_output, etc, ran out of memory.
if (isfail(ctx))
{
int i;
Free(ctx, output);
Free(ctx, constants);
Free(ctx, swizzles);
if (uniforms != NULL)
{
for (i = 0; i < ctx->uniform_count; i++)
Free(ctx, (void *) uniforms[i].name);
Free(ctx, uniforms);
} // if
if (attributes != NULL)
{
for (i = 0; i < attribute_count; i++)
Free(ctx, (void *) attributes[i].name);
Free(ctx, attributes);
} // if
if (outputs != NULL)
{
for (i = 0; i < output_count; i++)
Free(ctx, (void *) outputs[i].name);
Free(ctx, outputs);
} // if
if (samplers != NULL)
{
for (i = 0; i < ctx->sampler_count; i++)
Free(ctx, (void *) samplers[i].name);
Free(ctx, samplers);
} // if
if (ctx->out_of_memory)
{
for (i = 0; i < error_count; i++)
{
Free(ctx, (void *) errors[i].filename);
Free(ctx, (void *) errors[i].error);
} // for
Free(ctx, errors);
Free(ctx, retval);
return &MOJOSHADER_out_of_mem_data;
} // if
} // if
else
{
retval->profile = ctx->profile->name;
retval->output = output;
retval->output_len = (int) output_len;
retval->instruction_count = ctx->instruction_count;
retval->shader_type = ctx->shader_type;
retval->major_ver = (int) ctx->major_ver;
retval->minor_ver = (int) ctx->minor_ver;
retval->uniform_count = ctx->uniform_count;
retval->uniforms = uniforms;
retval->constant_count = ctx->constant_count;
retval->constants = constants;
retval->sampler_count = ctx->sampler_count;
retval->samplers = samplers;
retval->attribute_count = attribute_count;
retval->attributes = attributes;
retval->output_count = output_count;
retval->outputs = outputs;
retval->swizzle_count = ctx->swizzles_count;
retval->swizzles = swizzles;
retval->symbol_count = ctx->ctab.symbol_count;
retval->symbols = ctx->ctab.symbols;
retval->preshader = ctx->preshader;
// we don't own these now, retval does.
ctx->ctab.symbols = NULL;
ctx->preshader = NULL;
ctx->ctab.symbol_count = 0;
} // else
retval->error_count = error_count;
retval->errors = errors;
retval->malloc = (ctx->malloc == MOJOSHADER_internal_malloc) ? NULL : ctx->malloc;
retval->free = (ctx->free == MOJOSHADER_internal_free) ? NULL : ctx->free;
retval->malloc_data = ctx->malloc_data;
return retval;
} // build_parsedata
static void process_definitions(Context *ctx)
{
// !!! FIXME: apparently, pre ps_3_0, sampler registers don't need to be
// !!! FIXME: DCL'd before use (default to 2d?). We aren't checking
// !!! FIXME: this at the moment, though.
determine_constants_arrays(ctx); // in case this hasn't been called yet.
RegisterList *uitem = &ctx->uniforms;
RegisterList *prev = &ctx->used_registers;
RegisterList *item = prev->next;
while (item != NULL)
{
RegisterList *next = item->next;
const RegisterType regtype = item->regtype;
const int regnum = item->regnum;
if (!get_defined_register(ctx, regtype, regnum))
{
// haven't already dealt with this one.
switch (regtype)
{
// !!! FIXME: I'm not entirely sure this is right...
case REG_TYPE_RASTOUT:
case REG_TYPE_ATTROUT:
case REG_TYPE_TEXCRDOUT:
case REG_TYPE_COLOROUT:
case REG_TYPE_DEPTHOUT:
if (shader_is_vertex(ctx)&&shader_version_atleast(ctx,3,0))
{
fail(ctx, "vs_3 can't use output registers"
" without declaring them first.");
return;
} // if
// Apparently this is an attribute that wasn't DCL'd.
// Add it to the attribute list; deal with it later.
add_attribute_register(ctx, regtype, regnum,
MOJOSHADER_USAGE_UNKNOWN, 0, 0xF, 0);
break;
case REG_TYPE_ADDRESS:
case REG_TYPE_PREDICATE:
case REG_TYPE_TEMP:
case REG_TYPE_LOOP:
case REG_TYPE_LABEL:
ctx->profile->global_emitter(ctx, regtype, regnum);
break;
case REG_TYPE_CONST:
case REG_TYPE_CONSTINT:
case REG_TYPE_CONSTBOOL:
// separate uniforms into a different list for now.
prev->next = next;
item->next = NULL;
uitem->next = item;
uitem = item;
item = prev;
break;
case REG_TYPE_INPUT:
// You don't have to dcl_ your inputs in Shader Model 1.
if (shader_is_pixel(ctx)&&!shader_version_atleast(ctx,2,0))
{
add_attribute_register(ctx, regtype, regnum,
MOJOSHADER_USAGE_COLOR, regnum,
0xF, 0);
break;
} // if
// fall through...
default:
fail(ctx, "BUG: we used a register we don't know how to define.");
} // switch
} // if
prev = item;
item = next;
} // while
// okay, now deal with uniform/constant arrays...
VariableList *var;
for (var = ctx->variables; var != NULL; var = var->next)
{
if (var->used)
{
if (var->constant)
{
ctx->profile->const_array_emitter(ctx, var->constant,
var->index, var->count);
} // if
else
{
ctx->profile->array_emitter(ctx, var);
ctx->uniform_float4_count += var->count;
ctx->uniform_count++;
} // else
} // if
} // for
// ...and uniforms...
for (item = ctx->uniforms.next; item != NULL; item = item->next)
{
int arraysize = -1;
// check if this is a register contained in an array...
if (item->regtype == REG_TYPE_CONST)
{
for (var = ctx->variables; var != NULL; var = var->next)
{
if (!var->used)
continue;
const int regnum = item->regnum;
const int lo = var->index;
if ( (regnum >= lo) && (regnum < (lo + var->count)) )
{
assert(!var->constant);
item->array = var; // used when building parseData.
arraysize = var->count;
break;
} // if
} // for
} // if
ctx->profile->uniform_emitter(ctx, item->regtype, item->regnum, var);
if (arraysize < 0) // not part of an array?
{
ctx->uniform_count++;
switch (item->regtype)
{
case REG_TYPE_CONST: ctx->uniform_float4_count++; break;
case REG_TYPE_CONSTINT: ctx->uniform_int4_count++; break;
case REG_TYPE_CONSTBOOL: ctx->uniform_bool_count++; break;
default: break;
} // switch
} // if
} // for
// ...and samplers...
for (item = ctx->samplers.next; item != NULL; item = item->next)
{
ctx->sampler_count++;
ctx->profile->sampler_emitter(ctx, item->regnum,
(TextureType) item->index,
item->misc != 0);
} // for
// ...and attributes...
for (item = ctx->attributes.next; item != NULL; item = item->next)
{
ctx->attribute_count++;
ctx->profile->attribute_emitter(ctx, item->regtype, item->regnum,
item->usage, item->index,
item->writemask, item->misc);
} // for
} // process_definitions
static void verify_swizzles(Context *ctx)
{
size_t i;
const char *failmsg = "invalid swizzle";
for (i = 0; i < ctx->swizzles_count; i++)
{
const MOJOSHADER_swizzle *swiz = &ctx->swizzles[i];
if (swiz->swizzles[0] > 3) { fail(ctx, failmsg); return; }
if (swiz->swizzles[1] > 3) { fail(ctx, failmsg); return; }
if (swiz->swizzles[2] > 3) { fail(ctx, failmsg); return; }
if (swiz->swizzles[3] > 3) { fail(ctx, failmsg); return; }
} // for
} // verify_swizzles
// API entry point...
// !!! FIXME:
// MSDN: "Shader validation will fail CreatePixelShader on any shader that
// attempts to read from a temporary register that has not been written by a
// previous instruction." (true for ps_1_*, maybe others). Check this.
const MOJOSHADER_parseData *MOJOSHADER_parse(const char *profile,
const unsigned char *tokenbuf,
const unsigned int bufsize,
const MOJOSHADER_swizzle *swiz,
const unsigned int swizcount,
const MOJOSHADER_samplerMap *smap,
const unsigned int smapcount,
MOJOSHADER_malloc m,
MOJOSHADER_free f, void *d)
{
MOJOSHADER_parseData *retval = NULL;
Context *ctx = NULL;
int rc = 0;
int failed = 0;
if ( ((m == NULL) && (f != NULL)) || ((m != NULL) && (f == NULL)) )
return &MOJOSHADER_out_of_mem_data; // supply both or neither.
ctx = build_context(profile, tokenbuf, bufsize, swiz, swizcount,
smap, smapcount, m, f, d);
if (ctx == NULL)
return &MOJOSHADER_out_of_mem_data;
if (isfail(ctx))
{
retval = build_parsedata(ctx);
destroy_context(ctx);
return retval;
} // if
verify_swizzles(ctx);
// Version token always comes first.
ctx->current_position = 0;
rc = parse_version_token(ctx, profile);
// drop out now if this definitely isn't bytecode. Saves lots of
// meaningless errors flooding through.
if (rc < 0)
{
retval = build_parsedata(ctx);
destroy_context(ctx);
return retval;
} // if
if ( ((uint32) rc) > ctx->tokencount )
{
fail(ctx, "Corrupted or truncated shader");
ctx->tokencount = rc;
} // if
adjust_token_position(ctx, rc);
// parse out the rest of the tokens after the version token...
while (ctx->tokencount > 0)
{
// reset for each token.
if (isfail(ctx))
{
failed = 1;
ctx->isfail = 0;
} // if
rc = parse_token(ctx);
if ( ((uint32) rc) > ctx->tokencount )
{
fail(ctx, "Corrupted or truncated shader");
break;
} // if
adjust_token_position(ctx, rc);
} // while
ctx->current_position = MOJOSHADER_POSITION_AFTER;
// for ps_1_*, the output color is written to r0...throw an
// error if this register was never written. This isn't
// important for vertex shaders, or shader model 2+.
if (shader_is_pixel(ctx) && !shader_version_atleast(ctx, 2, 0))
{
if (!register_was_written(ctx, REG_TYPE_TEMP, 0))
fail(ctx, "r0 (pixel shader 1.x color output) never written to");
} // if
if (!failed)
{
process_definitions(ctx);
failed = isfail(ctx);
} // if
if (!failed)
ctx->profile->finalize_emitter(ctx);
ctx->isfail = failed;
retval = build_parsedata(ctx);
destroy_context(ctx);
return retval;
} // MOJOSHADER_parse
void MOJOSHADER_freeParseData(const MOJOSHADER_parseData *_data)
{
MOJOSHADER_parseData *data = (MOJOSHADER_parseData *) _data;
if ((data == NULL) || (data == &MOJOSHADER_out_of_mem_data))
return; // no-op.
MOJOSHADER_free f = (data->free == NULL) ? MOJOSHADER_internal_free : data->free;
void *d = data->malloc_data;
int i;
// we don't f(data->profile), because that's internal static data.
f((void *) data->output, d);
f((void *) data->constants, d);
f((void *) data->swizzles, d);
for (i = 0; i < data->error_count; i++)
{
f((void *) data->errors[i].error, d);
f((void *) data->errors[i].filename, d);
} // for
f((void *) data->errors, d);
for (i = 0; i < data->uniform_count; i++)
f((void *) data->uniforms[i].name, d);
f((void *) data->uniforms, d);
for (i = 0; i < data->attribute_count; i++)
f((void *) data->attributes[i].name, d);
f((void *) data->attributes, d);
for (i = 0; i < data->output_count; i++)
f((void *) data->outputs[i].name, d);
f((void *) data->outputs, d);
for (i = 0; i < data->sampler_count; i++)
f((void *) data->samplers[i].name, d);
f((void *) data->samplers, d);
free_symbols(f, d, data->symbols, data->symbol_count);
free_preshader(f, d, data->preshader);
f(data, d);
} // MOJOSHADER_freeParseData
int MOJOSHADER_version(void)
{
return MOJOSHADER_VERSION;
} // MOJOSHADER_version
const char *MOJOSHADER_changeset(void)
{
return MOJOSHADER_CHANGESET;
} // MOJOSHADER_changeset
int MOJOSHADER_maxShaderModel(const char *profile)
{
#define PROFILE_SHADER_MODEL(p,v) if (strcmp(profile, p) == 0) return v;
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_D3D, 3);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_BYTECODE, 3);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_GLSL, 3);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_GLSL120, 3);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_ARB1, 2);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_NV2, 2);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_NV3, 2);
PROFILE_SHADER_MODEL(MOJOSHADER_PROFILE_NV4, 3);
#undef PROFILE_SHADER_MODEL
return -1; // unknown profile?
} // MOJOSHADER_maxShaderModel
// end of mojoshader.c ...