math/doc/graphs/owens_integration_area.svg
2013-05-05 12:32:36 +00:00

122 lines
7.1 KiB
XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink"
version="1.1"
width="744.09448"
height="1052.3622"
id="svg2">
<defs
id="defs4" />
<metadata
id="metadata7">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
id="layer1">
<image
xlink:href="
nO3d23bjOBJEUWBW//8vax7YhWbxAoK4JCOBsx9mqh1lO2kLIQiSXfH3+wUAgCv/+3oAAMBrdDcA
+PNvd8cYY4z74PCfAAAd1/vuGCPn4AAg69/u3pqavTYAuMB5NwD48193p0MSDkwAQNxx382xCQDo
+6u72W4DgAsX5900OACI47lKAPDnr+7mWUoAcOGf7f94ihIAHOG5SgDwp8MhybZnp/cBwAzPVQKA
P3Q3APhDdwOAP63dnV6gwitVAMAM+24A8IfuBgB/6G4A8Kepu/knLgHgE+y7AcAfuhsA/KG7AcCf
+u6+PN3myBsADPT5hd384m8AsMSZCQD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90
NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4
Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cD
gD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90NwD4Q3cDgD90
NwD4Q3cDgD90NwD4Q3cDwFGMMcb49RQ5/3w9AAAISZX9+/2+nSSPfTcA/CtT3GrbcLobAEIoKG6p
+qa7AaBoxy11ikJ3A1idu+IOdDeAxXks7kB3A1jE5Wl1XXErHHzT3QAmt71Yu66dZZ+35PXdAKbV
uK1WPkVh3w1gThMXd6C7AUxp7uIOdDeA+VgW91cH33Q3AMfO1Wlf3J/UN89VAnBpa8xDn36y4/7k
FIXuBuDMXWmuU9yBMxMAvlDcG7obgBvixW158E13A/DhsbjL32VcZFbfdDcAB0qOKTQ344PQ3QDU
VZTm3MUd6G4AOnr9qr/pizvQ3QAUdPxVfyLFPfrgm+4G8KWttUOn0pQq7qH1TXcD+Ezf0pQq7suo
I7obwDco7hZ0N4APUNyN6G4A1gYV9+hP1B51RHcDGKXXa/7yUaK8Ge9e3/weQQD9dXzpSF0kVdyX
USO6G0BPCs2oMEM+akd3A+hjfyxAcY9+3pLuBtDqcJhLcT9G7YXOc5UA6p1/lp3itnnBCftuAK8d
6kmhGRVmqI4q0N0AXjg/5FeoP4UZqqM6dDeAIpcHtQr15+hnczo+b0l3A8gR6TjvP5uTieoKnecq
AdyS6rhXkcIMhVEd9t0AjnRe81cXKcxQHRVi3w3gP1Kv+auLFGaojsqx7wYQwt9nryJFRnFn0N3A
6g7PmIkU2WrF/fZ5S7obWNRlj0gV2atIYYb2qBzdDSxnvvpTmGFElEF3A5XOD3IPz/I9vu/mcFix
/8+OP8px+LyybdVS3GcK41VHeXQ30Me+ajNt8vv9Lp8VTNH2cboX9+W9xTn1GCUzbcYf0d1ApX3V
nqPH901/3n+EzMesdrgjkW0rTlEOUf42QHcD1s477kFSBUhVkkGkMEN7lEd3A/VSLb7dKae/f7dQ
W7beh15QqySKu8spCt0NtDr37+N5993KfOz0kjEOBzLnN04cKcwwIjqju4Em+xOJ/RvbP3L51nu1
Ilvtei/x+0yADt6Wdfwj/Wc4PWkZdus5/6EuZxDpHYq7Pbq8GbDvBqzdFf3h7Y/3B/slvU6RXUYK
MwyNzuhuoEnLk4rVn/Hwlrsiy7yvSCX1Le4zhfFGRIHuBqpVPJ3Y5TM+vnokWWRzmix1vXQ30MRm
071v7dC2OZWtJE5RSqKE7gYqGbT25RqmyB4jhRlGRHt0N6CoYyuJ9A7F3Rgd0N2AFoqsJVKYYUR0
RncDKvZPflJkXG8e3Q187/CSFYqM631EdwNfOrR2uK+kuqjvR9OPFGboFeXxM/HAN2KM8fRzPRRZ
S6QwQ6/oEftuwM55rVJkvSKFGXpFJehuwMJlxVBkvSKFGXpFhehuYKzPn1sTec6N6y2JytHdwCgK
daAwg2WkMEN19ArPVQJDKNSBwgyWkcIM1dFb7LuBnvbnmIEi43rLogrsu4E+Yozx79f8UWRc76vo
FfbdQKtt7W1rUqEOMl2gMF73yPv18joTwNq+tYNMHSRTbk4nu97q8xO6G3jtcjXq1MFlpDCDZaQw
Q2FUh+4GSu0Xm6+mUJjBMlKYoSRqedKS7gaKSK35V5HCDJaRwgwlUUtxB7obeJTZbgexOjhHCjNY
RgozFEaN6G7g1mGZiaz5KYuM632L13cDF2KMUebF2nWRwgyWkcIM1VEF9t3Afw6rS2Rhr1Zkq11v
HbobuF5XIgu7pcjOFMbrHrm+3mp0N5Y29z5upoua8npb0N1YlMjq5VRhUKQwQz5qxHOVWJHI6qXI
BkUKM+Sjduy7sZDDwajswl6tyFa73i7Yd2MJMcbo/DV/dZHCDJaRwgz5qBf23Zjctoq2JSSyeimy
QZHCDPmoI7obE9qfjaT1I7J6KbJBkcIM+agvuhtTuWztILN6KbJBkcIM+ag7uhvzeFzY5e/iOuJ6
pcYbhO7GDO622wfuNmuNTcH1So3XF90N3w57rpkeZa92qjDl9Y7DawThVYwx1r7sT2Rhr1Zkq13v
UOy74c+2Wral4ndhr1Zkq13vaPX/SvFfH6XhXzsGSlyeaPtd2PmI1aRDs7gD+27o69jCOu38GEGB
bHEHuhvKpnwoTXF7oVzcgecqIWvZ4ubARIrsvS/7bsi5PNo+pxXFnflcFDfOlJ+ooLuh4tyw3evP
3WYcH1Iu7kB3Q0Hja/7qIpF2pri9EDkqSehufGPbp+xbO1DcUPX4TbT/DtLdsJaWweFhJsUNTYLF
HehuWMo8CUlx7yPavFHHSlU7KknobhhRaEaFGQqjEd42Wsmzx+2fZYTtOK59EuWHTby+G8OlVRQo
7k/3ca9aZtv+b169r9qDhvhHxTtufxAs7kB3Y6jDmqG4O9ZBXdHXdU1jfX9ytnD5Fa6YRLO4A2cm
GCQ9XFWov8yKVRgvH+XH1qc26qsvtWxxh8DvEURv+0NGkfrzuxm/dGjDw5c686EO579396+Xx9yF
7xtubgB3s42ujpJ7joonABTqjn03Org8GBGpv8mKO9w06aEQLztxX7X7v3x5RxtP/65FyfuGU6Fn
qvxVcY/bvxc+pSlV3IHzbjRKZ4j757WCTP3NV9wlXn20Q+lXf6LyHa7aKcr+dntHrbgD+25UE+k4
insRFV+l/J2E06OShH03aoh03JTFrbYt7evunMd4Bu/FHdh3463Lo+1zqhkpzFAYzc3gMi+fca3+
IGrFHehuFCpZCWr1t1Rx77ex4ncAl097jv6MFe+lXNyBM5P5xD8u3/j27enPh4eZIh03ZXGXNMXd
K0PS/15+kP1fyDv/zer3vXt+cmghpi/Cq+ORS5rFHQKv717J22/ToQVEiqyluDOR5uRveVmJLuYU
H5J991oKH6umTfcExb03d3F3+QgGxDsxER+S82785fIRt0iRrXaKMh/xg3hf6G6EINNWFPcKlrrY
cejuVdxteTJPbQWZIqO45+D0SjW/U5x3LyfdEC9fQHL5N2U7bsri5mBBimZxB/bda8rvtQ9Eiozi
hj3Z4g7su9dU/qJXkSKjuGFP/DtFdy+h101NreOmLG7BLd7K7r5Tn9c33T257VD7/Ma6D7X9Qbbj
Hov7TGG8fIQPKX+nOO+e1v5Qu32PIFJkjfU302Z8tQcf4tdrj+6e0PmpyNTgr25z6S8rrMPukcIM
lpHCDJaR/QzGhU53T2XEbUhhHXaPFGawjBRmsIw+mcEY3T2DcQ/lFNZh90hhBstIYQbLSGEGA3S3
b0MfrImsgSkXNtc7KFKYwQbd7ZXZEZvmEq2LFGawjBRmsIwUZshHHdHd/pi19uVnEVkDUy5srrcl
UpghH/VFd3ti2dqZAS5nEI8UZrCMFGawjBRmyEfd0d0OfHusVjKGeJTefqYwXveI65Uab4u6L166
W9q3G+3959VZAxVR4m6zxvWWRIny9Xavb7pb1OfHI3tSa6BXpDCDZaQwg2WkMEM+akR3y5Fq7SBz
Q19tYXO9LZHCDPmoHd0tRK21g8wNfbWFzfW2RAozlESNK53u/t7QO+cWUjf0XpHCDJaRwgyWkcIM
hVEjuvtLghvtM5Eb+moLm+td7Xrforu/4aK1w9e3ZhZ2S6Qwg2WkMEN1VIHutualtc/2j/Xulo1+
pDCDZaQwg2WkMEOvKI/utuO3tYPMrZmF/SpSmMEyUpihV/SI7h6u7wMlS2lgkVszC/tVpDCDZaQw
Q6+oBN09kOuNdiJya2Zhv4oUZrCMFGboGz32Bt09xBytHbIPGvxGCjNYRgozWEYKM7RHj+juzqZp
7aB3a2Zhc72PkcIMI6Izursbm9a2v2+QvTWzsB8jhRksI4UZRkSX6O5Wb7/ivsjemlnYj5HCDJaR
wgyWEd1db6bjkUIKN9m6SGEGy0hhBstIYQbjiO6usWBrB5mbbMvCPlMYr3vE9UqNNyIKdPdbOq19
+X3d34jbh7z8yLK35pLDq0U2awnXqzDeiOj3+9HdpXRaO/z55oW/y3o/YWYnUvfptj98fpPtGCnM
YBkpzGAZKcwwLoox0t0PSu7t7R12xOk/797eQuom2ytSmMEyUpjBMlKYYXREd9+S2miX6L7jzp/A
CN6aCyOFGSwjhRksI4UZRkSHN9LdF9y1dnJ5ltJO9tbMwn6MFGawjBRmGBGd0d1/8dvaod8hyYHs
rZmF/RgpzGAZKcwwIrpEd//LdWuPI3trZmE/RgozWEYKMzRGr/pn9e5+e18n7nBU0n0nLnVDfxUp
zGAZKcxgGSnMUB3dvTFv3e52utE+DLz/z+7XMs3yONylqY3XPeJ6pcbLR9VW7G6nrf0tkRt64/KY
5t4oHyVcr8J4gx7cr9XdtHYdkRs6j7JbIoUZLCOFGcKAc8tkle6mtavprIGOkcIMlpHCDJaRwgyZ
N3YxeXcPerSyiP0xouYSrYsUZrCMFGawjBRmMDBtd7PR7khzidZFCjNYRgozWEYKM9iYsLtp7b40
l2hdpDCDZaQwg2U0zXlIiam6m9buTnOJ1kUKM1hGCjNYRpNtqx9N0t20tg2FJVoXKcxgGSnMYBmt
VtzBe3frf31dm6YO0tvPFMbrHnG9XT6ReKt47W4XX9yZKCzR6iiZ5t4oHyVcb91Hc1Es/rqb1rYn
skT9PspWiBRmsIxcn4eU8NTdtLaxGOPv91NYh90jhRksI4UZLKPpizt46W5a+ysK67B7pDCDZaQw
g2WUf5dpakS6u6e5h/ROc4nWRQozWEYKM1hGExxkFxLtbjbaOjSXaF2kMINlpDCDZbTUbk+uu2lt
KZpLtC5SmMEyUpjBMlqquEMIfU5/upwi0drjpJt1Uvd1VliidZHCDJaRwgzG0Wok9t20tgsiS7Sl
yM4UxuserXa9a/qyu/lOfKXiCy6yRBsX9iKb02S1613KN93NRtuFdBQmskQ5VWiJFGZoiaiLA+vu
prU/8dv9iM1bOqu3Y6Qwg2WkMEN1dPfGxdl1N63tkcjqpchaIoUZqiPcsehuWltKxTdCdmGvVmQT
Xy/98NbA7ua+dA4KC7tXpDCDZaQwQz66eyMeDelu7kgF1R15y675KYtsteu9/GuPfxObzt1Na89E
ds1PWWSrXW8GPV6iW3fT2i60fINE1nxLkZ0pjNc9krrexk6gx+90+5n49g8CAI9o8E23fTdf0PlE
fiACVh73f9wUDyR+nwkAnNHXGXQ3ACH0dSG6G8D3qOy3/vf1AACA1+hu3GIrBMjihQQA4A/7bgDw
h+7GLX7kCpBFdwOAP3Q3AGdijPsHhWs+QKS7ATizvcJiq+xlf3NDn+7O/96yNe8V9cU/vh4EeC3V
95rFHYb+2wvw4u7XbC67KgB9nX9/N7zj1yXDl2W33ka/z4RmB9BRquxlu6X/7+++/FKueccoju8U
5rDm1rv/vnv/RVz2LtGXu9v9mksC+va3zO0f0V7wtrrcBaPcgusB8ILXdwOAP3Q3APhDdwOAPxxo
PtiebuWrBEAK+24A8Gf47zMBAHTXp7s5UgAAS0Y/Ez+B9NiCOyoAn+O8u8j2Uyq0NgARdHcRftAf
gBS6GwD8obsBwB+6GwD8obsBwB+6GwD84feZAIA//wfNs+aIMMvtTwAAAABJRU5ErkJggg==
"
x="104.07146"
y="318.50504"
width="489"
height="302"
id="image2993" />
</g>
</svg>