Urho3D/bin/CoreData/Shaders/GLSL/Lighting.glsl
2016-11-19 22:28:37 +02:00

388 lines
13 KiB
GLSL

#ifdef COMPILEVS
vec3 GetAmbient(float zonePos)
{
return cAmbientStartColor + zonePos * cAmbientEndColor;
}
#ifdef NUMVERTEXLIGHTS
float GetVertexLight(int index, vec3 worldPos, vec3 normal)
{
vec3 lightDir = cVertexLights[index * 3 + 1].xyz;
vec3 lightPos = cVertexLights[index * 3 + 2].xyz;
float invRange = cVertexLights[index * 3].w;
float cutoff = cVertexLights[index * 3 + 1].w;
float invCutoff = cVertexLights[index * 3 + 2].w;
// Directional light
if (invRange == 0.0)
{
#ifdef TRANSLUCENT
float NdotL = abs(dot(normal, lightDir));
#else
float NdotL = max(dot(normal, lightDir), 0.0);
#endif
return NdotL;
}
// Point/spot light
else
{
vec3 lightVec = (lightPos - worldPos) * invRange;
float lightDist = length(lightVec);
vec3 localDir = lightVec / lightDist;
#ifdef TRANSLUCENT
float NdotL = abs(dot(normal, localDir));
#else
float NdotL = max(dot(normal, localDir), 0.0);
#endif
float atten = clamp(1.0 - lightDist * lightDist, 0.0, 1.0);
float spotEffect = dot(localDir, lightDir);
float spotAtten = clamp((spotEffect - cutoff) * invCutoff, 0.0, 1.0);
return NdotL * atten * spotAtten;
}
}
float GetVertexLightVolumetric(int index, vec3 worldPos)
{
vec3 lightDir = cVertexLights[index * 3 + 1].xyz;
vec3 lightPos = cVertexLights[index * 3 + 2].xyz;
float invRange = cVertexLights[index * 3].w;
float cutoff = cVertexLights[index * 3 + 1].w;
float invCutoff = cVertexLights[index * 3 + 2].w;
// Directional light
if (invRange == 0.0)
return 1.0;
// Point/spot light
else
{
vec3 lightVec = (lightPos - worldPos) * invRange;
float lightDist = length(lightVec);
vec3 localDir = lightVec / lightDist;
float atten = clamp(1.0 - lightDist * lightDist, 0.0, 1.0);
float spotEffect = dot(localDir, lightDir);
float spotAtten = clamp((spotEffect - cutoff) * invCutoff, 0.0, 1.0);
return atten * spotAtten;
}
}
#endif
#ifdef SHADOW
#if defined(DIRLIGHT) && (!defined(GL_ES) || defined(WEBGL))
#define NUMCASCADES 4
#else
#define NUMCASCADES 1
#endif
vec4 GetShadowPos(int index, vec3 normal, vec4 projWorldPos)
{
#ifdef NORMALOFFSET
float normalOffsetScale[4];
normalOffsetScale[0] = cNormalOffsetScale.x;
normalOffsetScale[1] = cNormalOffsetScale.y;
normalOffsetScale[2] = cNormalOffsetScale.z;
normalOffsetScale[3] = cNormalOffsetScale.w;
#ifdef DIRLIGHT
float cosAngle = clamp(1.0 - dot(normal, cLightDir), 0.0, 1.0);
#else
float cosAngle = clamp(1.0 - dot(normal, normalize(cLightPos.xyz - projWorldPos.xyz)), 0.0, 1.0);
#endif
projWorldPos.xyz += cosAngle * normalOffsetScale[index] * normal;
#endif
#if defined(DIRLIGHT)
return projWorldPos * cLightMatrices[index];
#elif defined(SPOTLIGHT)
return projWorldPos * cLightMatrices[1];
#else
return vec4(projWorldPos.xyz - cLightPos.xyz, 1.0);
#endif
}
#endif
#endif
#ifdef COMPILEPS
float GetDiffuse(vec3 normal, vec3 worldPos, out vec3 lightDir)
{
#ifdef DIRLIGHT
lightDir = cLightDirPS;
#ifdef TRANSLUCENT
return abs(dot(normal, lightDir));
#else
return max(dot(normal, lightDir), 0.0);
#endif
#else
vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w;
float lightDist = length(lightVec);
lightDir = lightVec / lightDist;
#ifdef TRANSLUCENT
return abs(dot(normal, lightDir)) * texture2D(sLightRampMap, vec2(lightDist, 0.0)).r;
#else
return max(dot(normal, lightDir), 0.0) * texture2D(sLightRampMap, vec2(lightDist, 0.0)).r;
#endif
#endif
}
float GetAtten(vec3 normal, vec3 worldPos, out vec3 lightDir)
{
lightDir = cLightDirPS;
return clamp(dot(normal, lightDir), 0.0, 1.0);
}
float GetAttenPoint(vec3 normal, vec3 worldPos, out vec3 lightDir)
{
vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w;
float lightDist = length(lightVec);
float falloff = pow(clamp(1.0 - pow(lightDist / 1.0, 4.0), 0.0, 1.0), 2.0) * 3.14159265358979323846 / (4.0 * 3.14159265358979323846)*(pow(lightDist, 2.0) + 1.0);
lightDir = lightVec / lightDist;
return clamp(dot(normal, lightDir), 0.0, 1.0) * falloff;
}
float GetAttenSpot(vec3 normal, vec3 worldPos, out vec3 lightDir)
{
vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w;
float lightDist = length(lightVec);
float falloff = pow(clamp(1.0 - pow(lightDist / 1.0, 4.0), 0.0, 1.0), 2.0) / (pow(lightDist, 2.0) + 1.0);
lightDir = lightVec / lightDist;
return clamp(dot(normal, lightDir), 0.0, 1.0) * falloff;
}
float GetDiffuseVolumetric(vec3 worldPos)
{
#ifdef DIRLIGHT
return 1.0;
#else
vec3 lightVec = (cLightPosPS.xyz - worldPos) * cLightPosPS.w;
float lightDist = length(lightVec);
return texture2D(sLightRampMap, vec2(lightDist, 0.0)).r;
#endif
}
float GetSpecular(vec3 normal, vec3 eyeVec, vec3 lightDir, float specularPower)
{
vec3 halfVec = normalize(normalize(eyeVec) + lightDir);
return pow(max(dot(normal, halfVec), 0.0), specularPower);
}
float GetIntensity(vec3 color)
{
return dot(color, vec3(0.299, 0.587, 0.114));
}
#ifdef SHADOW
#if defined(DIRLIGHT) && (!defined(GL_ES) || defined(WEBGL))
#define NUMCASCADES 4
#else
#define NUMCASCADES 1
#endif
#ifdef VSM_SHADOW
float ReduceLightBleeding(float min, float p_max)
{
return clamp((p_max - min) / (1.0 - min), 0.0, 1.0);
}
float Chebyshev(vec2 Moments, float depth)
{
//One-tailed inequality valid if depth > Moments.x
float p = float(depth <= Moments.x);
//Compute variance.
float Variance = Moments.y - (Moments.x * Moments.x);
float minVariance = cVSMShadowParams.x;
Variance = max(Variance, minVariance);
//Compute probabilistic upper bound.
float d = depth - Moments.x;
float p_max = Variance / (Variance + d*d);
// Prevent light bleeding
p_max = ReduceLightBleeding(cVSMShadowParams.y, p_max);
return max(p, p_max);
}
#endif
#ifndef GL_ES
float GetShadow(vec4 shadowPos)
{
#if defined(SIMPLE_SHADOW)
// Take one sample
#ifndef GL3
float inLight = shadow2DProj(sShadowMap, shadowPos).r;
#else
float inLight = textureProj(sShadowMap, shadowPos);
#endif
return cShadowIntensity.y + cShadowIntensity.x * inLight;
#elif defined(PCF_SHADOW)
// Take four samples and average them
// Note: in case of sampling a point light cube shadow, we optimize out the w divide as it has already been performed
#ifndef POINTLIGHT
vec2 offsets = cShadowMapInvSize * shadowPos.w;
#else
vec2 offsets = cShadowMapInvSize;
#endif
#ifndef GL3
return cShadowIntensity.y + cShadowIntensity.x * (shadow2DProj(sShadowMap, shadowPos).r +
shadow2DProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)).r +
shadow2DProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)).r +
shadow2DProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw)).r);
#else
return cShadowIntensity.y + cShadowIntensity.x * (textureProj(sShadowMap, shadowPos) +
textureProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)) +
textureProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)) +
textureProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw)));
#endif
#elif defined(VSM_SHADOW)
vec2 samples = texture2D(sShadowMap, shadowPos.xy / shadowPos.w).rg;
return cShadowIntensity.y + cShadowIntensity.x * Chebyshev(samples, shadowPos.z / shadowPos.w);
#endif
}
#else
float GetShadow(highp vec4 shadowPos)
{
#if defined(SIMPLE_SHADOW)
// Take one sample
return cShadowIntensity.y + (texture2DProj(sShadowMap, shadowPos).r * shadowPos.w > shadowPos.z ? cShadowIntensity.x : 0.0);
#elif defined(PCF_SHADOW)
// Take four samples and average them
vec2 offsets = cShadowMapInvSize * shadowPos.w;
vec4 inLight = vec4(
texture2DProj(sShadowMap, shadowPos).r * shadowPos.w > shadowPos.z,
texture2DProj(sShadowMap, vec4(shadowPos.x + offsets.x, shadowPos.yzw)).r * shadowPos.w > shadowPos.z,
texture2DProj(sShadowMap, vec4(shadowPos.x, shadowPos.y + offsets.y, shadowPos.zw)).r * shadowPos.w > shadowPos.z,
texture2DProj(sShadowMap, vec4(shadowPos.xy + offsets.xy, shadowPos.zw)).r * shadowPos.w > shadowPos.z
);
return cShadowIntensity.y + dot(inLight, vec4(cShadowIntensity.x));
#elif defined(VSM_SHADOW)
vec2 samples = texture2D(sShadowMap, shadowPos.xy / shadowPos.w).rg;
return cShadowIntensity.y + cShadowIntensity.x * Chebyshev(samples, shadowPos.z / shadowPos.w);
#endif
}
#endif
#ifdef POINTLIGHT
float GetPointShadow(vec3 lightVec)
{
vec3 axis = textureCube(sFaceSelectCubeMap, lightVec).rgb;
float depth = abs(dot(lightVec, axis));
// Expand the maximum component of the light vector to get full 0.0 - 1.0 UV range from the cube map,
// and to avoid sampling across faces. Some GPU's filter across faces, while others do not, and in this
// case filtering across faces is wrong
const vec3 factor = vec3(1.0 / 256.0);
lightVec += factor * axis * lightVec;
// Read the 2D UV coordinates, adjust according to shadow map size and add face offset
vec4 indirectPos = textureCube(sIndirectionCubeMap, lightVec);
indirectPos.xy *= cShadowCubeAdjust.xy;
indirectPos.xy += vec2(cShadowCubeAdjust.z + indirectPos.z * 0.5, cShadowCubeAdjust.w + indirectPos.w);
vec4 shadowPos = vec4(indirectPos.xy, cShadowDepthFade.x + cShadowDepthFade.y / depth, 1.0);
return GetShadow(shadowPos);
}
#endif
#ifdef DIRLIGHT
float GetDirShadowFade(float inLight, float depth)
{
return min(inLight + max((depth - cShadowDepthFade.z) * cShadowDepthFade.w, 0.0), 1.0);
}
#if !defined(GL_ES) || defined(WEBGL)
float GetDirShadow(const vec4 iShadowPos[NUMCASCADES], float depth)
{
vec4 shadowPos;
if (depth < cShadowSplits.x)
shadowPos = iShadowPos[0];
else if (depth < cShadowSplits.y)
shadowPos = iShadowPos[1];
else if (depth < cShadowSplits.z)
shadowPos = iShadowPos[2];
else
shadowPos = iShadowPos[3];
return GetDirShadowFade(GetShadow(shadowPos), depth);
}
#else
float GetDirShadow(const highp vec4 iShadowPos[NUMCASCADES], float depth)
{
return GetDirShadowFade(GetShadow(iShadowPos[0]), depth);
}
#endif
#ifndef GL_ES
float GetDirShadowDeferred(vec4 projWorldPos, vec3 normal, float depth)
{
vec4 shadowPos;
#ifdef NORMALOFFSET
float cosAngle = clamp(1.0 - dot(normal, cLightDirPS), 0.0, 1.0);
if (depth < cShadowSplits.x)
shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.x * normal, 1.0) * cLightMatricesPS[0];
else if (depth < cShadowSplits.y)
shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.y * normal, 1.0) * cLightMatricesPS[1];
else if (depth < cShadowSplits.z)
shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.z * normal, 1.0) * cLightMatricesPS[2];
else
shadowPos = vec4(projWorldPos.xyz + cosAngle * cNormalOffsetScalePS.w * normal, 1.0) * cLightMatricesPS[3];
#else
if (depth < cShadowSplits.x)
shadowPos = projWorldPos * cLightMatricesPS[0];
else if (depth < cShadowSplits.y)
shadowPos = projWorldPos * cLightMatricesPS[1];
else if (depth < cShadowSplits.z)
shadowPos = projWorldPos * cLightMatricesPS[2];
else
shadowPos = projWorldPos * cLightMatricesPS[3];
#endif
return GetDirShadowFade(GetShadow(shadowPos), depth);
}
#endif
#endif
#ifndef GL_ES
float GetShadow(const vec4 iShadowPos[NUMCASCADES], float depth)
#else
float GetShadow(const highp vec4 iShadowPos[NUMCASCADES], float depth)
#endif
{
#if defined(DIRLIGHT)
return GetDirShadow(iShadowPos, depth);
#elif defined(SPOTLIGHT)
return GetShadow(iShadowPos[0]);
#else
return GetPointShadow(iShadowPos[0].xyz);
#endif
}
#ifndef GL_ES
float GetShadowDeferred(vec4 projWorldPos, vec3 normal, float depth)
{
#ifdef DIRLIGHT
return GetDirShadowDeferred(projWorldPos, normal, depth);
#else
#ifdef NORMALOFFSET
float cosAngle = clamp(1.0 - dot(normal, normalize(cLightPosPS.xyz - projWorldPos.xyz)), 0.0, 1.0);
projWorldPos.xyz += cosAngle * cNormalOffsetScalePS.x * normal;
#endif
#ifdef SPOTLIGHT
vec4 shadowPos = projWorldPos * cLightMatricesPS[1];
return GetShadow(shadowPos);
#else
vec3 shadowPos = projWorldPos.xyz - cLightPosPS.xyz;
return GetPointShadow(shadowPos);
#endif
#endif
}
#endif
#endif
#endif